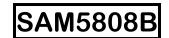


AUDIO & MUSIC MULTI-DSP PROCESSOR

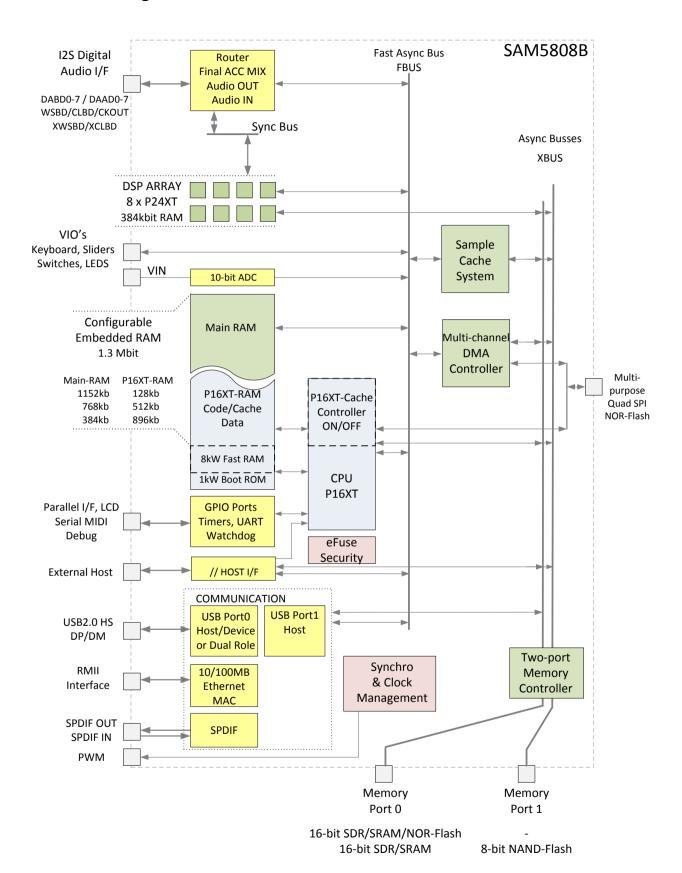
Key features

- Dream DSP Array of 8 new 24bit/56bit DSP cores (P24XT) supporting 56bit MAC operations (400M MAC/sec), vector processing, double precision instructions and offering a rich set of hardware accelerated macro-instructions (including 48x48bit multiply, double precision bi-quad filter)
- □ New highly **speed optimized 16bit CPU** (P16XT) with optimized instruction set for C compiler, interrupts, new fast 32-bit instructions, 512Kword max. program code size
- □ Built-in 1kbit eFuse for configuration and security (program code and sound bank protection)
- □ Built-in configurable fast **Data/Effect RAM up to 48Kx24** (or 72Kx16), + 16Kx24 DSP RAM
- □ Built-in configurable fast Program Code/Cache RAM, on-the-fly program code decryption
- □ Multi-channel DMA for fast data transfers to external memories, supports circular buffers and transparent 24- to 16-bit transformation
- □ External memories: parallel memory port with flexible configurations (NOR Flash + SRAM/SDRAM, 8bit SLC NAND Flash (with ECC) + SRAM/SDRAM), up to 512MByte addressing space for NOR Flashes, **8GByte for NAND Flashes**
- □ On-the-fly wave sample decryption (AES encryption format with high security)
- 8-bit or 16-bit parallel slave Port for external Host control and fast data transfer
- □ Multi-purpose SPI interface (single or Quad-SPI, mode 0) for Serial Flash, SD-Card, etc.
- □ Serial MIDI IN/OUT interface (optional 2nd I/F)
- □ Two USB 2.0 High Speed Ports (HOST, DEVICE or Dual-Role)
- □ 10/100 Mbps Ethernet MAC with RMII interface to external PHY
- □ **S/PDIF interface** (IEC60958) with clock recovery (concurrent IN/OUT)
- □ Up to 16 Audio channels IN, 16 Audio channels OUT, all Audio IN can be used in clock slave mode
- Direct connection to velocity keyboards (various types), LEDs, switches, sliders/potentiometers/ modulation wheels, LCD or Graphic Display and others
- Watchdog, Timers, Power reduction modes, unused primary interfaces can be used as GPIOs
- □ 176-pin LQFP package


Typical applications

- Digital Pianos & Keyboards
- □ High-Range E-Drum Sound Modules

©Dream 2016, all cited trademarks belong to their respective owner. "Dream", "Dream DSP Array" are trademarks from Dream S.A.S.


Dream reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

1. SAM5808B Internal Architecture

1.1. Block Diagram

1.2. Overview

Based on a multi-layer architecture, the new family of DREAM's Audio & Music processors (SAM5000) is built around a new highly speed optimized 16-bit CPU (P16XT) and a configurable array of hardware accelerated 24-bit DSP cores (P24XT).

A Sample Cache System dedicated to sound synthesis allows SAM5000 processors to reach high levels of polyphony whatever the memory type used for sound bank storage. Moreover, this solution allows on-the-fly decryption of waves protected with strong AES^(*) encryption.

The processing of delay lines in external memory is hugely facilitated with the integration of a multi-channel DMA controller. This controller performs fast memory-to-memory data transfers with some key features: burst modes and circular buffer structures are supported and data are automatically re-formatted (24-bit→16-bit) when transfers are done from internal to external memories. Transfers can be done in parallel on several channels without requiring any assistance of the CPU or DSP cores.

The SAM5808B is part of the new generation of DREAM's audio & music processors and automatically inherits all above features. With an array of 8 P24XT DSP cores, the SAM5808B is delivered in a 176-pin QFP package. It is mainly intended for digital piano, keyboard and electronic drum applications requiring high quality sound synthesis and effect processing.

In addition to a large variety of communication interfaces (USB 2.0 HS ports, Ethernet MAC controller, S/PDIF IN/OUT...), the SAM5808B has two separated memory ports supporting various memory configurations. Port 0 can be shared between SDRAM or SRAM and NOR-Flash. SLC NAND-Flash devices can be used for the storage of huge sound banks on Port1. Up to 4 different memory configurations can be defined with pull-resistors externally connected to dedicated pins. Memory configuration is read by boot program at power-up from dedicated pins or fuse bits.

The SAM5808B includes a 24-bit Audio Router and supports up to 16 Audio Channels IN & OUT. Depending on primary functions in use, digital audio signals can be accessed via primary or secondary IO pads. Most of the IO pads that are not used for primary functions remain available for secondary functions or for firmware programmable IO functions (Versatile IO's or GPIO's).

The SAM5808B can handle up to 176 switches (organized in matrix form) and 88 LEDs (in a time multiplexed way) through versatile firmware programmable IO pads. Keyboard and switches scanning tasks can be fully customized in one dedicated P24XT, making the SAM5808B directly compatible with most of velocity keyboards. Similarly, LCD or graphic displays can be directly connected to programmable IO's and controlled by the P16XT.

A built-in ADC allows connecting continuous controllers like pitch-bend wheel, modulation, volume sliders, tempo sliders, etc.

A built-in 1kbit eFuse provides a plenty of irreversible one-time-programmable bits for the storage of configuration parameters, decryption keys and other security purposes. AES-protected sound banks and firmware can be decrypted on-the-fly within the SAM5808B.

(*) AES is the worldwide most used symmetric-key algorithm.

1.3. DSP Array – 8 * P24XT

The SAM5808B is built around an Array of 8 new 24-bit DSP cores (P24XT).

Similarly to previous generation, each P24XT DSP core includes a 2k x 24 RAM and a 2k x 24 ROM. The RAM contains both data and DSP instructions, while the ROM contains typical coefficients such as FFT cosines and windowing and micro-code for hardware accelerated micro-instructions.

The P24 sends and receives audio samples through the Sync Bus at the frame rate (typically, 48kHz frame period = 2048 cycles at 98.8 MHz). For the transfer of all other data, the P24XT is able to communicate in an asynchronous way through Async Busses. P24XT memories can be accessed through the Async Bus by others.

A lot of operations can be performed with much more precision with new P24XT core. For single-precision operations:

- Programmable 24-bit fixed format: 1.0.23, 1.2.21, 1.8.15 or 1.15.8
- 56-bit MAC unit with 24-bit x 24-bit multiplication + 8 guard bits to prevent overflow issues

For double-precision operations:

- Programmable 48-bit fixed format: 1.0.47, 1.2.45, 1.8.39 or 1.15.32
- Large set of 48-bit Double Precision (DP) operations

The P24XT DSP core also offers hugely improved performances with a new and rich set of hardware accelerated macro-instructions:

- ADD, MUL, MAC operations on vectors can be performed with only one macroinstruction, address pointers being self-incremented
- o ring buffer structures are supported in several vector instructions
- o several arithmetic operations are available: SIN, COS, DIV, LN, EXP, ...
- o Operations on complex values in single and double precision
- o Polynomial calculation in single and double precision
- Optimized filtering instructions: 1st & 2nd order filters, programmable number of taps, single or double precision

Based on polynomial interpolation, up to 27 voices (at typical 48kHz frame clock) with high quality filtering can be synthesized within one P24XT, and up to 50M of 56-bit MAC operations can be performed per second.

1.4. Sync Bus

The Sync Bus transfers audio samples on a frame basis, typical frame rates being 44.1, 48, 96 & 192 kHz. Each frame is divided into 32 time slots. Each slot is divided into 8 bus cycles. Each P24XT is assigned a hardwired time slot (16 to 31), during which it may provide 24-bit data to the bus (up to 8 data samples). Each P24 can read data on the bus at any time, allowing inter P24 communication at the current sampling rate. Slots 0 to 15 are reserved for a specific router DSP, which also handles audio out, audio in, and remix send.

1.5. Async Busses

As shown in the general block diagram, several 24-bit Async Busses can be accessed by most of masters (P16XT, P24XT, DMA controller...) in a parallel way. Two busses XBUS0 & XBUS1 give access to external memories.

1.6. Enhanced 16-bit CPU – P16XT

The SAM5808B operates under the control of a new highly speed optimized 16-bit CPU (P16XT).

The key features of the P16XT are the following:

- Operating frequency up to 196.6 MHz
- New instructions including 32 bit data handling and 32x32 multiply
- Maximum executable program size = 512k words
- Backward compatibility with previous P16 products and optimized instruction set for C-compiler
- Interrupt handling: 3 interrupt signals, 32 sources with programmable Mask, Polarity & Triggering mode

A tightly coupled code/cache memory allows the P16XT to fetch code lines with reduced latency when needed. This memory can be either used as code memory when the whole firmware can be stored in internal memory or as cache memory (n-Way Set Associative Cache System) in other cases. The internal code/cache memory is loaded during the boot sequence (at power-up) by P16XT ROM boot program.

By default, the code/cache memory has a size of 512kbits (32k*16). Depending on performance requirements, the distribution of internal memory between code/cache and data/effect partitions can be modified as explained in the next paragraph.

The P16XT ROM holds the boot program as well as a debugger which uses a dedicated asynchronous serial line.

dream

1.7. On-chip memory

Besides distributed memory in P24XT DSP cores (8 * 2Kx24-bit RAM for a total of 384kbits) and in communication controllers, the SAM5808B offers 1.4M bits of on-chip memory. One part of this memory (P16XT-RAM) is reserved for direct access by the P16XT (tightly coupled code/cache memory). The second part of this memory (MAIN-RAM) is used as data memory and can be accessed by any master through the asynchronous bus.

The memory partitioning is configurable by firmware. The memory space is divided into 4 banks:

- Bank 0 has a size of 256kbits and is accessed by P16XT only.
- Banks 1 & 2 have a size of 384kbits and can be either used as code/cache memory for P16XT or as main data memory
- Bank 3 has a size of 384kbits and is always used as main data ram

		RAMCF	G='00'		RAMC	FG='01'	RAMCFG='10'		
		P16XT	P16XT Main		P16XT	Main	P16XT	Main	
		RAM	RAM		RAM	RAM	RAM	RAM	
Bank0	256 kbits	16kx16	-		16kx16	-	16kx16	-	
Bank1	384 kbits	-	16kx24		24kx16	-	24kx16	-	
Bank2	384 kbits	-	16kx24		-	16kx24	24kx16	-	
Bank3	384 kbits	-	16kx24		-	16kx24	-	16kx24	
	Total	256kbits	1152kbits		640kbits	768kbits	1Mbits	384kbits	
		16kx16	48kx24		40kx16	32kx24	64kx16	16kx24	

1.8. Multi-channel DMA controller

The DMA controller is intended to perform high-speed memory-to-memory data transfers without using CPU resources: blocks can be copied from one source address to one destination address with a specified length, while both source and destination addresses are self-incremented. Taking advantage of the multi-layer architecture, this module can operate on several channels in parallel. Moreover, the DMA controller is able to automatically perform 24-bit to 16-bit transformation when data blocks are transferred from internal to external memories. For making the handling of delay lines easier, circular buffers are also supported.

Main features:

- The DMA controller has 4 channels
- programmable block length and source & destination addresses
- supports word and burst transfers
- supports ring buffers
- transparent 24-bit to 16-bit transformation

1.9. Sample Cache System

Thanks to its sample cache system, the SAM5808B can support up to 189 voices of polyphony with sound banks stored either in SDRAM, NOR-Flash or in NAND-Flash. With NAND-Flash, cache memory must be extended in external SDRAM.

1.10. Two-port memory controller

The two-port memory controller enables the SAM5808B to interface with several memory types:

Config	Port0	Port1
1	16-bit SDRAM + NOR Flash	-
2	16-bit SRAM + NOR Flash	-
3	16-bit SDRAM	8-bit SLC NAND Flash (with ECC)
4	16-bit SRAM	8-bit SLC NAND Flash (with ECC)

Port 0 can be shared between volatile (SRAM or SDRAM) and non-volatile (NOR Flash) memories.

Memory configurations are defined with pull-resistors externally connected to dedicated pins and are read by boot program at power-up from dedicated pins or fuse bits.

For the storage of sound banks, address lines support

- up to 2 x 256MBytes of non-volatile NOR Flash memory
- up to 2 x 4GBytes of non-volatile NAND Flash memory

The two-port memory controller handles transfer requests initiated by masters like P16XT CPU, P24XT DSP cores, DMA controller, Sample cache system or other communication controllers through both XBUS asynchronous busses.

Control registers are accessed by the P16XT for defining configuration and optimizing frequency and latency parameters. Burst transfers are always initiated when possible.

1.11. Router: final ACC, MIX, audio out, audio in

This block includes a RAM, accessed through the Async Bus, which defines the routing from the Sync Bus to/from the Audio I/O or back to the Sync Bus (mix send). It takes care of mix and accumulation from Sync Bus samples. 16 channels of audio in and 16 channels of audio out are provided (8 stereo in/out, I2S or MSB Left format). The stereo audio in channel may have a different sampling rate than the audio out channels. In this case, one or more P24s take care of sampling rate conversion.

1.12. External Host Interface

The Host Parallel Interface is used for fast read/write transfers between an external host processor and the SAM5808B. E.g. it allows an external host to be a master for fast data transfer to SAM5808B connected memories (the handshake protocol for the fast data transfer is driven by the firmware).

This module is connected internally to asynchronous busses.

1.13. Versatile I/O's and GPIO's

Most of the IO pads, when not used for primary (or secondary) specific functions, remain available as firmware programmable IO pads. Programmable IO functions are divided into 2 categories:

- Versatile IO's when they can be controlled through asynchronous busses by either P16XT or P24XT cores for keyboard scanning, sliders, switches and LED's control.
- General Purpose IO's (GPIO's) when accessible by the P16XT only for functionalities like LCD Display control, ...

1.14. High-speed USB 2.0 - Ports 0 & 1

USB Port 0 allows the SAM5808B to connect it directly to

- an USB host such as a PC in device mode
- an USB device such as a mass storage USB key in host mode.
- USB Port 0 supports also dual-role mode

USB Port 1 is used in host mode.

Both USB Ports 0 & 1 have PHY on-die.

1.15. 10/100Mbit Ethernet MAC

The SAM5808B offers the capability to be directly connected to a network by way of an embedded Ethernet MAC. The controller supports both 10M and 100M bits/sec. Low-pin count RMII protocol is used for connection to external PHY.

1.16. S/PDIF - Sony/Philips Digital Interface

The S/PDIF audio module allows the SAM5808B to receive and transmit digital audio concurrently. The SAM5808B provides one single S/PDIF receiver with an input signal and one S/PDIF transmitter with another output signal.

For synchronization purposes, the audio clock can be recovered from the incoming audio stream.

1.17. Synchronization and clock management

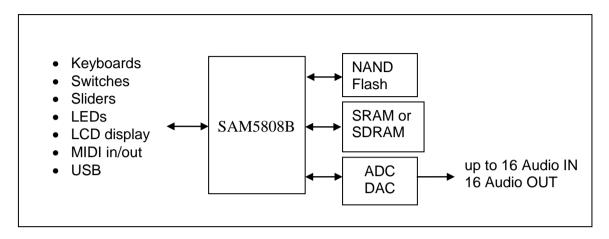
Depending on the application, the SAM5808B supports 3 clock sources (OSC1, OSC2 & VCXO) for the generation of the reference clock (see table below) and 2 programmable PLL. With a crystal at 12.288MHz, the main PLL generates a clock at 393.2 MHz (32*12.288MHz). This high-frequency system clock is optionally divided through programmable dividers to generate several slower control clocks. Most of internal clocks can be stopped individually for flexible power optimization.

For audio streaming applications, the SAM5808B is able to behave as a slave. Synchronization to an external clock, extracted from input audio streaming for example, can be achieved by controlling an external VCXO with built-in PWM signal. Re-synchronized clock from VCXO can be used as 3rd clock source. In this case, the SAM5X does use the clock from OSC1 (12MHz) during the start-up period.

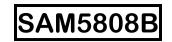
Clock	USB/	Description	OSC1	OSC2	Audio Source	Typical (*)
Mode	Eth in		(MHz)	(MHz)	Clock (MHz)	frame clock
	use					(kHz)
0	Yes	Single-Xtal	12	NU	12	46.875
		12MHz-USB/Eth				
1	No	Single-Xtal	12.288	NU	12.288	48
		12.288/11.2896MHz-Audio	11.2896		11.2896	44.1
2	Yes	Two-Xtal	12	12.288	12.288	48
		12MHz-USB/Eth		11.2896	11.2896	44.1
		+ 12.288/11.2896MHz-Audio				
3	Yes	Two-Xtal	12	VCXO	VCXO	Ext. frame
		12MHz-USB/Eth				frequency
		+ VCXO				

^(*)SAM5000 supports 46.875kHz, 48/44.1KHz, 96/88.2KHz and 192KHz sampling rates

1.18. eFuse and security


A built-in 1kbit eFuse provides a plenty of irreversible one-time-programmable bits for the storage of configuration parameters, decryption keys and other security purpose data. AES-protected sound banks and firmware can be decrypted on-the-fly within the SAM5808B.

dream


2. Typical application examples

2.1. **High Range Piano / Keyboard / E-Drum** (using Memory Configuration 3 or 4)

- □ Up to 189 voice high quality sound synthesis (polynomial interpolation, new filter modes...)
- □ Copy protected sound banks in cost saving memories (NAND Flash + SDRAM)
- □ High quality effects (Reverb, Chorus, Equalizer...)
- Independent simultaneous high quality Effects Processing blocks:
 - New high-class Reverb
 - Chorus/Flanger/Phaser/Tremolo/Rotary
 - Amp-Modeling (Distortion), Compressor
 - Delay
 - flexible Equalizers for cabinet corrections and modelling, and user EQ settings
 - Sympathetic String/Pedal Resonance for high range digital Piano products
 - ...and many others out of vast Dream Effect Library
- □ Direct connection to keyboard, switches, LEDs, Graphic LCD display
- □ Fast 10-bit ADC for continuous controllers like sliders, pedals or drum pad triggers
- □ Two independent USB 2.0 High-Speed Ports can be used for concurrent
 - USB-to-Host: Audio Class compliant Audio/MIDI interface to a computer
 - USB-to-Device: USB-Stick / Flash drive for song playback and data storage etc.

dream

3. SAM5808B capacity and I/O configuration

The SAM5808B can run a firmware from an external NOR Flash, Quad-SPI NOR Flash, NAND Flash or serial SPI-Flash/DataFlash/EEPROM memory, by using cache mode or boot-load mechanism. A firmware can also be down-loaded from a Host CPU, and SAM5808B runs the firmware from local RAM. The SAM5808B can use its local RAM for effects processing (the embedded RAM is widely configurable for best choice between program and effects memory space), it can be extended by external low cost SRAM, Quad-SPI RAM or SDRAM. The SAM5808B is the ideal choice for low cost digital piano, keyboards and professional electronic drum products, with low count of required external components and many configurable I/Os.

3.1. DSP considerations

The SAM5808B includes 8 x P24XT DSPs.

The table below lists the performance achievable by the P24:

Function	P24XTs required
189-voice Wavetable Synthesis @48kHz	7
stereo Reverb, Chorus, Equalizer and Keyboard Scanning @48kHz	1

3.2. I/O selection considerations

I/Os are organized in groups, which can be mutually exclusive because they share the same IC pins (please refer to the pin-out to identify the exclusions). The two main types of operation are host controlled and stand-alone.

3.2.1. Host-controlled operation

There are 3 main ways of communication with a host processor:

- 8-bit parallel bi-directional Host interface signals: D7-D0, CS/, WR/, RD/, A0, IRQ
- Asynchronous serial (UART), 2x MIDI IN and 2x MIDI OUT
- Synchronous serial

signals: SSDIN, SSCLK, SSYNC, SSINT/

3.2.2. Stand-alone operation

Possible stand-alone modes are:

- Firmware into external parallel NOR Flash
- Firmware into external NAND Flash memory
- Firmware into external SPI NOR Flash connected on Multi-Purpose SPI bus

4. SAM5808B PINOUT

4.1. Memory Config

The SAM5808B can be used in 4 different hardware configurations called Memory Config. This flexible architecture allows selecting the appropriate memory interfaces for each application.

Memory Config can be defined in two ways:

- 1. <u>Sensed at start-up</u>: Memory Config is defined by the level on MC0 and MC1 pins sensed at start-up. MC0 sensed on CKOUT and MC1 sensed on SPICK.
- 2. <u>Read from Efuse MC bits</u>: Memory Config is preprogrammed in embedded eFuse. In this case MC0-MC1 pins will not be sensed.

4.1.1. Memory Config Table

MC1	MC0	Memory Config	Description
0	0	1	SDRAM + NOR Flash
0	1	2	SRAM + NOR Flash
1	0	3	SDRAM + NAND 8-bit Flash
1	1	4	SRAM + NAND 8-bit Flash

dream

4.2. Pin-out by pin

4.2.1. Memory Config 1: SDRAM + NOR Flash

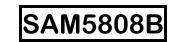
Pin#	Name	Pin#	Name	Pin#	Name	Pin#	Name
1	RST/	45	MD3	89	VD33	133	CKOUT
2	TEST	46	GND	90	VIN	134	DABD0
3	STIN	47	VM	91	VA33	135	DAAD0
4	STOUT	48	MD4	92	AGND	136	CS/
5	MIDI_IN1	49	MD5	93	SEL0	137	RD/
6	MIDI_OUT1	50	MD6	94	SEL1	138	WR/
7	SPICK	51	MD7	95	DABD1	139	IRQ
8	SPICS0/	52	MD8	96	REF_CLK	140	A0
9	VD33	53	MD9	97	MA16	141	VD33
10	ROW0	54	VM	98	MA17	142	BR0
11	ROW1	55	MD10	99	MA18	143	BR1
12	ROW2	56	MD11	100	MWE/	144	BR2
13	ROW3	57	MD12	101	MOE/	145	BR3
14	VD33	58	MD13	102	MA19	146	BR4
15	SPI0	59	MD14	103	VD33	147	VD12
16	SPI1	60	MD15	104	MA20	148	VD12
17	SPI2	61	VM	105	MA21	149	VD33
18	SPI3	62	MA4	106	MA22	150	BR5
19	NRCS0/	63	MA5	107	MA23	151	BR6
20	NRCS1/	64	MA6	108	MA24	152	BR7
21	VM	65	MA7	109	MA25	153	D0
22	DRCAS/	66	MA8	110	MA26	154	D1
23	DRRAS/	67	MA9	111	VD12	155	D2
24	DRWE/	68	VD12	112	MK8	156	D3
25	DRCKE	69	MA10	113	MK9	157	D4
26	DRCS0/	70	MA11	114	MK10	158	D5
27	DRCS1/	71	MA12	115	VD33	159	D6
28	VM	72	MA13	116	RX_ER	160	D7
29	MA0	73	MA14	117	ETH_RES/	161	TXD0
30	MA1	74	MA15	118	USBID	162	VD33
31	MA2	75	VM	119	FSOURCE	163	TXD1
32	MA3	76	MK0	120	OSC1_X1	164	RXD0
33	VM	77	MK1	121	OSC1_X2	165	RXD1
34	VD12	78	MK2	122	VD33U0	166	TX_EN
35	MDC	79	MK3	123	USBDM0	167	CRS_DV
36	MDIO	80	MK4	124	USBDP0	168	VD330
37	DRDM0	81	MK5	125	GNDU0	169	OSC2_X1
38	DRDM1	82	MK6	126	USBREF0	170	OSC2_X2
39	P3.8	83	MK7	127	VD33U1	171	GNDO
40	VM	84	BR8	128	USBDM1	172	GND
41	DRCK	85	BR9	129	USBDP1	173	VC12
42	MD0	86	BR10	130	GNDU1	174	OUTVC12
43	MD1	87	CLBD	131	USBREF1	175	VD33R
44	MD2	88	WSBD	132	GND	176	GNDR

4.2.2. Memory Config 2: SRAM + NOR Flash

Pin#	Name	Pin#	Name	Pin#	Name	Pin#	Name
1	RST/	45	MD3	89	VD33	133	CKOUT
2	TEST	46	GND	90	VIN	134	DABD0
3	STIN	47	VM	91	VA33	135	DAAD0
4	STOUT	48	MD4	92	AGND	136	DAAD5
5	MIDI_IN1	49	MD5	93	SEL0	137	DABD4
6	MIDI_OUT1	50	MD6	94	SEL1	138	DABD5
7	SPICK	51	MD7	95	SRCS/	139	DAAD4
8	SPICS0/	52	MD8	96	REF_CLK	140	DAAD3
9	VD33	53	MD9	97	MA16	141	VD33
10	ROW0	54	VM	98	MA17	142	BR0
11	ROW1	55	MD10	99	MA18	143	BR1
12	ROW2	56	MD11	100	MWE/	144	BR2
13	ROW3	57	MD12	101	MOE/	145	BR3
14	VD33	58	MD13	102	MA19	146	BR4
15	SPI0	59	MD14	103	VD33	147	VD12
16	SPI1	60	MD15	104	MA20	148	VD12
17	SPI2	61	VM	105	MA21	149	VD33
18	SPI3	62	MA4	106	MA22	150	BR5
19	NRCS0/	63	MA5	107	MA23	151	BR6
20	NRCS1/	64	MA6	108	MA24	152	BR7
21	VM	65	MA7	109	MA25	153	D0
22	CS/	66	MA8	110	MA26	154	D1
23	RD/	67	MA9	111	VD12	155	D2
24	WR/	68	VD12	112	MK8	156	D3
25	IRQ	69	MA10	113	MK9	157	D4
26	DABD3	70	MA11	114	MK10	158	D5
27	DAAD1	71	MA12	115	VD33	159	D6
28	VM	72	MA13	116	RX_ER	160	D7
29	MA0	73	MA14	117	ETH_RES/	161	TXD0
30	MA1	74	MA15	118	USBID	162	VD33
31	MA2	75	VM	119	FSOURCE	163	TXD1
32	MA3	76	MK0	120	OSC1_X1	164	RXD0
33	VM	77	MK1	121	OSC1_X2	165	RXD1
34	VD12	78	MK2	122	VD33U0	166	TX_EN
35	MDC	79	MK3	123	USBDM0	167	CRS_DV
36	MDIO	80	MK4	124	USBDP0	168	VD330
37	A0	81	MK5	125	GNDU0	169	OSC2_X1
38	DABD1	82	MK6	126	USBREF0	170	OSC2_X2
39	DAAD2	83	MK7	127	VD33U1	171	GNDO
40	VM	84	BR8	128	USBDM1	172	GND
41	DABD2	85	BR9	129	USBDP1	173	VC12
42	MD0	86	BR10	130	GNDU1	174	OUTVC12
43	MD1	87	CLBD	131	USBREF1	175	VD33R
44	MD2	88	WSBD	132	GND	176	GNDR

4.2.3. Memory Config 3: SDRAM + NAND 8-bit Flash

Pin#	Name	Pin#	Name	Pin#	Name	Pin#	Name
1	RST/	45	MD3	89	VD33	133	CKOUT
2	TEST	46	GND	90	VIN	134	NDCE0/
3	STIN	47	VM	91	VA33	135	NDCE1/
4	STOUT	48	MD4	92	AGND	136	NDR B/
5	MIDI_IN1	49	MD5	93	SEL0	137	NDALE
6	MIDI_OUT1	50	MD6	94	SEL1	138	NDCLE
7	SPICK	51	MD7	95	DABD1	139	NDWE/
8	SPICS0/	52	MD8	96	REF_CLK	140	NDRE/
9	VD33	53	MD9	97	CS/	141	VD33
10	ROW0	54	VM	98	RD/	142	BR0
11	ROW1	55	MD10	99	WR/	143	BR1
12	ROW2	56	MD11	100	IRQ	144	BR2
13	ROW3	57	MD12	101	A0	145	BR3
14	VD33	58	MD13	102	D0	146	BR4
15	SPI0	59	MD14	103	VD33	147	VD12
16	SPI1	60	MD15	104	D1	148	VD12
17	SPI2	61	VM	105	D2	149	VD33
18	SPI3	62	MA4	106	D3	150	BR5
19	DAAD0	63	MA5	107	D4	151	BR6
20	DABD0	64	MA6	108	D5	152	BR7
21	VM	65	MA7	109	D6	153	NDIO0
22	DRCAS/	66	MA8	110	D7	154	NDIO1
23	DRRAS/	67	MA9	111	VD12	155	NDIO2
24	DRWE/	68	VD12	112	MK8	156	NDIO3
25	DRCKE	69	MA10	113	MK9	157	NDIO4
26	DRCS0/	70	MA11	114	MK10	158	NDIO5
27	DRCS1/	71	MA12	115	VD33	159	NDIO6
28	VM	72	MA13	116	RX_ER	160	NDIO7
29	MA0	73	MA14	117	ETH_RES/	161	TXD0
30	MA1	74	MA15	118	USBID	162	VD33
31	MA2	75	VM	119	FSOURCE	163	TXD1
32	MA3	76	MK0	120	OSC1_X1	164	RXD0
33	VM	77	MK1	121	OSC1_X2	165	RXD1
34	VD12	78	MK2	122	VD33U0	166	TX_EN
35	MDC	79	MK3	123	USBDM0	167	CRS_DV
36	MDIO	80	MK4	124	USBDP0	168	VD330
37	DRDM0	81	MK5	125	GNDU0	169	OSC2_X1
38	DRDM1	82	MK6	126	USBREF0	170	OSC2_X2
39	P3.8	83	MK7	127	VD33U1	171	GNDO
40	VM	84	BR8	128	USBDM1	172	GND
41	DRCK	85	BR9	129	USBDP1	173	VC12
42	MD0	86	BR10	130	GNDU1	174	OUTVC12
43	MD1	87	CLBD	131	USBREF1	175	VD33R
44	MD2	88	WSBD	132	GND	176	GNDR



4.2.4. Memory Config 4: SRAM + NAND 8-bit Flash

Pin#	Name	Pin#	Name	Pin#	Name	Pin#	Name
1	RST/	45	MD3	89	VD33	133	CKOUT
2	TEST	46	GND	90	VIN	134	NDCE0/
3	STIN	47	VM	91	VA33	135	NDCE1/
4	STOUT	48	MD4	92	AGND	136	NDR B/
5	MIDI_IN1	49	MD5	93	SEL0	137	NDALE
6	MIDI_OUT1	50	MD6	94	SEL1	138	NDCLE
7	SPICK	51	MD7	95	SRCS/	139	NDWE/
8	SPICS0/	52	MD8	96	REF_CLK	140	NDRE/
9	VD33	53	MD9	97	MA16	141	VD33
10	ROW0	54	VM	98	MA17	142	BR0
11	ROW1	55	MD10	99	MA18	143	BR1
12	ROW2	56	MD11	100	MWE/	144	BR2
13	ROW3	57	MD12	101	MOE/	145	BR3
14	VD33	58	MD13	102	D0	146	BR4
15	SPI0	59	MD14	103	VD33	147	VD12
16	SPI1	60	MD15	104	D1	148	VD12
17	SPI2	61	VM	105	D2	149	VD33
18	SPI3	62	MA4	106	D3	150	BR5
19	DAAD0	63	MA5	107	D4	151	BR6
20	DABD0	64	MA6	108	D5	152	BR7
21	VM	65	MA7	109	D6	153	NDIO0
22	CS/	66	MA8	110	D7	154	NDIO1
23	RD/	67	MA9	111	VD12	155	NDIO2
24	WR/	68	VD12	112	MK8	156	NDIO3
25	IRQ	69	MA10	113	MK9	157	NDIO4
26	DABD3	70	MA11	114	MK10	158	NDIO5
27	DAAD1	71	MA12	115	VD33	159	NDIO6
28	VM	72	MA13	116	RX_ER	160	NDIO7
29	MA0	73	MA14	117	ETH_RES/	161	TXD0
30	MA1	74	MA15	118	USBID	162	VD33
31	MA2	75	VM	119	FSOURCE	163	TXD1
32	MA3	76	MK0	120	OSC1_X1	164	RXD0
33	VM	77	MK1	121	OSC1_X2	165	RXD1
34	VD12	78	MK2	122	VD33U0	166	TX_EN
35	MDC	79	MK3	123	USBDM0	167	CRS_DV
36	MDIO	80	MK4	124	USBDP0	168	VD330
37	A0	81	MK5	125	GNDU0	169	OSC2_X1
38	DABD1	82	MK6	126	USBREF0	170	OSC2_X2
39	DAAD2	83	MK7	127	VD33U1	171	GNDO
40	VM	84	BR8	128	USBDM1	172	GND
41	DABD2	85	BR9	129	USBDP1	173	VC12
42	MD0	86	BR10	130	GNDU1	174	OUTVC12
43	MD1	87	CLBD	131	USBREF1	175	VD33R
44	MD2	88	WSBD	132	GND	176	GNDR

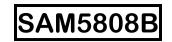
4.3. Pin description

White cells describes Primary function of the pin
Grey cells describes Secondary function of the pin
Pink cells describes GPIO function of the pin
Yellow cells describes special function of the pin at start-up

PD indicates pin with built-in pull-down resistor. (PD) indicates that the pull-down can be disabled. PU indicates pin with built-in pull-up resistor. (PU) indicates that the pull-down can be disabled. SVT indicates a 5 volt tolerant Input or I/O pin.

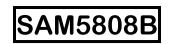
MEM indicates a pad supplied by VM.

DR4, DR8, DR12 indicates driving capability at VOL, VOH (see § 7.3.- D.C. Characteristics)


SR3: If GPIO is used as input, an external 330 Ω (min) serial resistor is needed for safe ROM boot.

SR7: If GPIO is used as input, an external 750 Ω (min) serial resistor is needed for safe ROM boot.

4.3.1. Power Supply Group


Pin name	Pin#	Туре	Mem Cfg	Description
VD12	34,68, 111,147, 148	PWR	1-4	Power for the internal core, +1.2V nominal (1.2V \pm 10 %). These pins must be connected to the output of the regulator OUTVC12 (pin 174). 100nF+10nF capacitors should be connected between each of these pins and a close ground plane. 10 μ F should be added on two opposite sides.
VC12	173	PWR	1-4	Power for the internal PLL, +1.2V nominal (1.2V \pm 10 %). This pin must be connected to the output of the regulator OUTVC12 (pin 174). 10 μ F+100nF capacitors should be connected between this pin and a close ground plane.
VD33	9,14,89, 103,115, 141,149, 162	PWR	1-4	+3.3V power for periphery. All these pins should be returned to nominal 3.3V. 100nF decoupling capacitors should be connected between half of these pins and ground plane
GND	46,132, 172	PWR	1-4	Digital ground. All these pins should be returned to a ground plane
VD33O	168	PWR	1-4	+3.3V power for internal oscillator OSC2. A 100nF filtering capacitor should be connected between VD33O and GNDO.
GNDO	171	PWR	1-4	Digital ground for internal oscillator OSC2. This pin should be returned to the ground plane
VD33R	175	PWR	1-4	+3.3V power for internal 3.3V to 1.2 V regulator. A 10µF filtering capacitor should be connected between VD33R and GNDR.
GNDR	176	PWR	1-4	Digital ground for internal 3.3V to 1.2 V regulator. This pin should be returned to the ground plane
VD33U0, VD33U1	122,127	PWR	1-4	+3.3V power for internal USB ports. 10µF+100nF+10nF capacitors should be connected between VD33U0 and GNDU0, VD33U1 and GNDU1.
GNDU0, GNDU1	125,130	PWR	1-4	Digital ground for internal USB ports. These pins should be returned to a ground plane
VM	21,28,33, 40,47,54, 61,75	PWR	1-4	Memory PAD Power +2.25V to +3.6V. Depending on the memory type, all VM pins should be returned to 3.3V or 2.5V. 100nF capacitors should be connected between half of these pins and a close ground plane. 10nF capacitors should be connected between the other half of these pins and a close ground plane. 10µF should be added on both sides.

Pin name	Pin#	Туре	Mem Cfg	Description
VA33	91	PWR	1-4	Analog power for the ADC. Should be connected to a clean analog +3.3V nominal. 10µF+100nF capacitors should be connected between VA33 and AGND.
AGND	92	PWR	1-4	Analog ground for ADC. Should be returned to a clean analog ground plane.
OUTVC12	174	PWR	1-4	3.3V to 1.2 V regulators output. The built-in regulator gives 1.2V for internal use. VC12 and VD12 pins should also be connected to this pin. Decoupling capacitors 3.3µF+100nF or 4.7µF+100nF must be connected between OUTVC12 pin and GNDR
FSOURCE	119	PWR	1-4	Fuse Program source input. - Left open or grounded (recommended) for normal operation. - Connected to +3.3V/12mA(min) power supply for fuse programming. 10µF+100nF capacitors should be connected between FSOURCE and ground plane.

4.3.2. Test, Reset, Oscillators, USB, ADC, MIDI, Debug.

Pin name	Pin#	Туре	Mem Cfg	Description
TEST	2	In PD	1-4	Test input. Should be grounded or left open.
RST/	1	In	1-4	Master reset and Power down. Schmitt trigger input. RST/should be held low during at least 10ms after power is applied. On the rising edge of RST/ the chip enters its initialization routine.
OSC1_X1- OSC1_X2	120,121	-	1-4	Main Oscillator OSC1 - Dual crystal design: 12 MHz external crystal connection for USB embedded Ports and Ethernet controller Single crystal design: USB, Ethernet, System and audio clocks are derived fromOSC1. Crystal value can be:
OSC2_X1- OSC2_X2	169,170	-	1-4	- Dual crystal design: System and audio clocks are derived from OSC2_X1-OSC2_X2. Crystal value can be 11.2896MHz or 12.288MHz Single crystal design: These pins should be left unconnected An external clock can be connected to OSC2_X1. (e.g., enslavement to external VCX0 driven by SAM5808B PWM generator)
USBDM0	123	I/O	1-4	USB D- connection (analog) of USB Port 0
USBDP0	124	I/O	1-4	USB D+ connection (analog) of USB Port 0
USBREF0	126	In	1-4	A $12k\Omega \pm 1\%$ resistor should be connected between this pin and GNDU0. Unconnected if USB Port 0 is not used.
USBID	118	In svt	1-4	USB ID. Detect if A device or B device in case of USB Port 0 running in Dual Role mode.
MIDI_OUT2	118	Out dr4	1-4	Additional Serial MIDI Out.
P8.15	118	I/O 5VT DR4	1-4	General purpose I/O pin.
USBDM1	128	I/O	1-4	USB D- connection (analog) of USB Port 1
USBDP1	129	I/O	1-4	USB D+ connection (analog) of USB Port 1
USBREF1	131	In	1-4	A $12k\Omega \pm 1\%$ resistor should be connected between this pin and GNDU1. Unconnected if USB Port 1 is not used.
VIN	90	In	1-4	Analog input of embedded ADC: Multiple sliders should be connected through external analog multiplexer like 4051. Channels should be selected by ROW0-ROW3.
MIDI_IN1	5	In 5VT (PU)	1-4	Serial MIDI In.
MIDI_IN2	5	In 5VT (PU)	1-4	Additional Serial MIDI In.
P0.14	5	I/O 5VT (PU) DR4	1-4	General purpose I/O pin.
MIDI_OUT1	6	Out dr4	1-4	Serial MIDI Out.
P0.9	6	I/O DR4	1-4	General purpose I/O pin.
STIN	3	In PD	1-4	Serial test input. This is a 57.6 kbauds asynchronous input used for firmware debugging. This pin is tested at power-up. The built-in debugger starts if STIN is found high. It should be grounded or left open for normal operation.
STOUT	4	Out dr4	1-4	Serial test output. 57.6 kbauds async output used for firmware debugging.
MIDI_IN2	4	In (PU)	1-4	Additional Serial MIDI In.
P0.15	4	I/O (PU) DR4	1-4	General purpose I/O pin.

4.3.3. Multi-Purpose Quad SPI as primary function

Pin name	Pin#	Туре	Mem	Description
			Cfg	
SPICK	7	Out drs	1-4	Data clock for Multi-purpose Quad SPI interface.
PWM_OUT	7	Out drs	1-4	Pulse Width Modulation Output for main clock enslavement
				on clock from SPDIF In or USB Audio.
P7.14	7	I/O DR8 SR3	1-4	General purpose I/O pin.
MC1	7	In	1-4	Memory Config 1. This pin is sensed at power-up. MC0-MC1 setting allows boot ROM code to start the right Memory Config.
SPICS0/	8	Out dr82	1-4	Chip select 0 for Multi-purpose Quad SPI interface.
P7.15	8	I/O (PU) DR8 SR3	1-4	General purpose I/O pin.
SPI0	15	I/O dr12	1-4	SPI data 0 Serial Output to SI peripheral Input for Single bit data commands (MOSI) Serial IO0 for Quad commands.
SPDIF_OUT	15	Out dr12	1-4	SPDIF output.
P7.10	15	I/O DR12 SR3	1-4	General purpose I/O pin.
SPI1	16	I/O dr4	1-4	SPI data 1 Serial Input from SO peripheral Output for Single bit data commands (MISO) Serial IO1 for Quad commands.
SPDIF_IN	16	In	1-4	SPDIF input.
P7.11	16	I/O DR4	1-4	General purpose I/O pin.
SPI2	17	I/O dr4	1-4	SPI data 2. Serial IO2 Quad commands
PWM_OUT	17	Out dr4	1-4	Pulse Width Modulation Output for main clock enslavement on clock from SPDIF In or USB Audio.
P7.12	17	I/O (PU) DR4	1-4	General purpose I/O pin.
SPI3	18	I/O dr4	1-4	SPI data 2. Serial IO2 Quad commands
SPDIF_IN	18	In (PU) DR4	1-4	SPDIF input
P7.13	18	I/O (PU) DR4	1-4	General purpose I/O pin.

4.3.4. Ethernet as primary function

Pin name	Pin#	Туре	Mem Cfg	Description
REF_CLK	96	Out DR12	1-4	25MHz RMII reference clock to the Ethernet PHY.
SPICS1/	96	Out DR12	1-4	Chip select 1 for Multi-purpose Quad SPI interface.
P8.0	96	I/O (PU) DR12	1-4	General purpose I/O pin.
ETH_RES/	117	Out dr4	1-4	Reset output to the Ethernet PHY
XWSBD1	117	In	1-4	External word select clock for digital audio inputs DAAD[7:0].
P8.1	117	I/O dr4	1-4	General purpose I/O pin.
RX_ER	116	In	1-4	RMII Receive Error from the Ethernet PHY.
XCLBD1	116	In	1-4	External clock bit for digital audio inputs DAAD[7:0].
P8.2_IntB	116	I/O dr4	1-4	General purpose I/O pin.
				External Interrupt source IntB.
RXD0	164	In	1-4	RMII Receive Data 0 from the Ethernet PHY.
DAAD6	164	In	1-4	Stereo audio digital input 6, I2S or MSB format. Can operate on CLBD master rate or XCLBD external rate.
P8.3	164	I/O dr4	1-4	General purpose I/O pin.
RXD1	165	In	1-4	RMII Receive Data 1 from the Ethernet PHY.
DAAD7	165	In	1-4	Stereo audio digital input 7, I2S or MSB format. Can
				operate on CLBD master rate or XCLBD external rate.
P8.4	165	I/O dr4	1-4	General purpose I/O pin.
CRS_DV	167	In	1-4	RMII Carrier Sense/Receive Data Valid from the Ethernet PHY
DABD6	167	Out DR4	1-4	Stereo audio digital output 6, I2S or MSB format.
P8.5	167	I/O dr4	1-4	General purpose I/O pin.
TXD0	161	Out DR4	1-4	RMII Transmit Data 0 to the Ethernet PHY.
DABD7	161	Out dr4	1-4	Stereo audio digital output 7, I2S or MSB format.
P8.6	161	I/O dr4	1-4	General purpose I/O pin.
TXD1	163	Out DR4	1-4	RMII Transmit Data 1 to the Ethernet PHY.
SPICS2/	163	Out dr4	1-4	Chip select 2 for Multi-purpose Quad SPI interface.
P8.7	163	I/O (PU) DR4	1-4	General purpose I/O pin.
TX_EN	166	Out dr4	1-4	RMII Transmit Enable to the Ethernet PHY.
SPICS3/	166	Out dr4	1-4	Chip select 3 for Multi-purpose Quad SPI interface.
P8.8	166	I/O (PU) DR4	1-4	General purpose I/O pin.
MDC	35	Out MEM	1-4	Management Interface (MII) Clock to the Ethernet PHY.
XWSBD0	35	In мем	1-4	External word select clock 0 for digital audio inputs DAAD[7:0].Word Clock input for audio sync. on external clock device.
P8.9	35	І/О мем	1-4	General purpose I/O pin.
MDIO	36	І/О мем	1-4	Management Interface (MII) Data I/O to the Ethernet PHY.
XCLBD0	36	In мем	1-4	External clock bit for digital audio inputs DAAD[7:0].
P8.10	36	I/O MEM	1-4	General purpose I/O pin.

4.3.5. Host Parallel Interface as primary function

Pin name	Pin#	Туре	Mem	Description
riii iiaiiie	FIII#	туре	Cfg	Description
D0-D7	153-159	I/O drs	1,2	Host parallel interface data. Output if CS/ and RD/ are low
	160	I/O dr4		(read from chip), input if CS/ and WR/ are low (write to
				chip). Type of data defined by A0-A1 address input.
DAAD2	153	In svt	1,2	Stereo audio digital input 2, I2S or MSB format.
DABD4	154	Out drs	1,2	Stereo audio digital output 4, I2S or MSB format.
DABD3	155	Out drs	1,2	Stereo audio digital output 3, I2S or MSB format.
DABD2	156	Out drs	1,2	Stereo audio digital output 2, I2S or MSB format.
XWSBD1	157	In svt	1,2	External word sel. Clock 1 for digital audio inputs DAAD[7:0].
XCLBD1	158	In svt	1,2	External clock bit 1 for digital audio inputs DAAD[7:0].
XWSBD0	159	In svt	1,2	 External word select clock 0 for digital audio inputs DAAD[7:0]. Word Clock input for audio sync. on external clock device.
XCLBD0	160	In	1,2	External clock bit for digital audio inputs DAAD[7:0].
P0.0-P0.6	153-159	I/O 5VT	1,2	General purpose I/O pins. Can be individually programmed
		DR8	,	as input or output.
P0.7	160	I/O dr4	1,2	General purpose I/O pin.
D0-D7	102,	I/O 5VT	3,4	Host parallel interface data. Output if CS/ and RD/ are low
	104-110	DR8	,	(read from chip), input if CS/ and WR/ are low (write to
				chip). Type of data defined by A0-A1 address input.
DAAD2	102	In svt	3,4	Stereo audio digital input 2, I2S or MSB format.
DABD4	104	Out drs	3,4	Stereo audio digital output 4, I2S or MSB format.
DABD3	105	Out drs	3,4	Stereo audio digital output 3, I2S or MSB format.
DABD2	106	Out drs	3,4	Stereo audio digital output 2, I2S or MSB format.
XWSBD1	107	In svt	3,4	External word sel. Clock 1 for digital audio inputs DAAD[7:0].
XCLBD1	108	In svt	3,4	External clock bit 1 for digital audio inputs DAAD[7:0].
XWSBD0	109	In svt	3,4	 External word select clock 0 for digital audio inputs DAAD[7:0]. Word Clock input for audio sync. on external clock device.
XCLBD0	110	In svt	3,4	External clock bit 0 for digital audio inputs DAAD[7:0].
P0.0-P0.7	102,	I/O 5VT	3,4	General purpose I/O pins. Can be individually programmed
	104-110	DR8		as input or output.
IRQ	139	Out drs	1	Host parallel interface mode 0 interrupt request. High when data is ready to be transferred from chip to host. Reset by a read from host (CS/=0 and RD/=0). External 100k max pull-down resistor is needed for safe ROM boot.
SSINT/	139	Out drs	1	Serial Slave Synchronous Interface data request, active low. External 100k max pull-up resistor is needed for safe ROM boot.
P0.8_IntA	139	I/O 5VT DR8	1	General purpose I/O pin. External Interrupt source IntA.
A0	140	In	1	Host parallel interface address 0. In case A1=0 (mode 0): Indicates data/status or data/ctrl transfer type (CS/ RD/ low or CS/ WR/ low). In case A1=1 (mode 1): the A0 input is "don't care".
SSCLK	140	In	1	Serial Slave Synchronous Interface clock input.
P0.10	140	I/O dr4	1	General purpose I/O pin.

Pin name	Pin#	Туре	Mem	Description
CS/	136	In	Cfg 1	Heat parallel interface chip coloct, active low
SSYNC	136	In svt		Host parallel interface chip select, active low. Serial Slave Synchronous Interface input sync signal.
P0.11	136	In svt	1	General purpose I/O pin.
P0.11	136	DR8	'	General purpose I/O pin.
WR/	138	In svt	1	Host parallel interface write, active low. D7-D0 or D15-D0 data is sampled by chip on WR/ rising edge if CS/ is low.
SSDIN	138	In 5VT	1	Serial Slave Synchronous Interface input data.
P0.12	138	I/O 5VT DR8	1	General purpose I/O pin.
RD/	137	In svt	1	Host parallel interface read, active low. D7-D0 or D15-D0 data is output when RD/ goes low and CS/ is low. External 100k max pull-up resistor is needed for safe ROM boot.
MIDI_OUT2	137	Out svT	1	Additional Serial MIDI Out. External 100k max pull-up resistor is needed for safe ROM boot.
P0.13	137	I/O 5VT DR8	1	General purpose I/O pin. External 100k max pull-up resistor is needed for safe ROM boot. If used as input, should not be driven low by external device while ROM boot.
IRQ	25	Outmem	2,4	Host parallel interface mode 0 interrupt request. High when data is ready to be transferred from chip to host. Reset by a read from host (CS/=0 and RD/=0). External 100k max pull-down resistor is needed for safe ROM boot.
SSINT/	25	Out mem	2,4	Serial Slave Synchronous Interface data request, active low. External 100k max pull-up resistor is needed for safe ROM boot.
P0.8_IntA	25	І/О мем	2,4	General purpose I/O pin. External Interrupt source IntA.
A0	37	In мем	2,4	Host parallel interface address 0. In case A1=0 (mode 0): Indicates data/status or data/ctrl transfer type (CS/ RD/ low or CS/ WR/ low). In case A1=1 (mode 1): the A0 input is "don't care".
SSCLK	37	In мем	2,4	Serial Slave Synchronous Interface clock input.
P0.10	37	І/О мем	2,4	General purpose I/O pin.
CS/	22	In мем	2,4	Host parallel interface chip select, active low.
SSYNC	22	In мем	2,4	Serial Slave Synchronous Interface input sync signal.
P0.11	22	І/О мем	2,4	General purpose I/O pin.
WR/	24	In мем	2,4	Host parallel interface write, active low. D7-D0 or D15-D0 data is sampled by chip on WR/ rising edge if CS/ is low.
SSDIN	24	In мем	2,4	Serial Slave Synchronous Interface input data.
P0.12	24	І/О мем	2,4	General purpose I/O pin.
RD/	23	In мем	2,4	Host parallel interface read, active low. D7-D0 or D15-D0 data is output when RD/ goes low and CS/ is low. External 100k max pull-up resistor is needed for safe ROM boot.
MIDI_OUT2	23	Out mem	2,4	Additional Serial MIDI Out. External 100k max pull-up resistor is needed for safe ROM boot.
P0.13	23	I/O MEM	2,4	General purpose I/O pin. External 100k max pull-up resistor is needed for safe ROM boot. If used as input, should not be driven low by external device while ROM boot.

Pin name	Pin#	Туре	Mem	Description
·= 0	100		Cfg	
IRQ	100	Out dr12	3	Host parallel interface mode 0 interrupt request. High when
				data is ready to be transferred from chip to host. Reset by a
				read from host (CS/=0 and RD/=0). External 100k max pull-down resistor is needed for safe ROM boot.
SSINT/	100	Out DR12	3	Serial Slave Synchronous Interface data request, active
331117	100	Outbriz	3	low.
				External 100k max pull-up resistor is needed for safe ROM boot.
P0.8_IntA	100	I/O DR12	3	General purpose I/O pin.
_				External Interrupt source IntA.
A0	101	In 5VT	3	Host parallel interface address 0.
				In case A1=0 (mode 0): Indicates data/status or data/ctrl
				transfer type (CS/ RD/ low or CS/ WR/ low).
				In case A1=1 (mode 1): the A0 input is "don't care".
SSCLK	101	In 5VT	3	Serial Slave Synchronous Interface clock input.
P0.10	101	I/O 5VT DR8	3	General purpose I/O pin.
CS/	97	In svt	3	Host parallel interface chip select, active low.
SSYNC	97	In svt	3	Serial Slave Synchronous Interface input sync signal.
P0.11	97	I/O 5VT DR8	3	General purpose I/O pin.
WR/	99	In svt	3	Host parallel interface write, active low. D7-D0 or D15-D0
				data is sampled by chip on WR/ rising edge if CS/ is low.
SSDIN	99	In svt	3	Serial Slave Synchronous Interface input data.
P0.12	99	I/O 5VT DR8	3	General purpose I/O pin.
RD/	98	In svt	3	Host parallel interface read, active low. D7-D0 or D15-D0
				data is output when RD/ goes low and CS/ is low.
MIDI OUT2	98	Out 5VT	3	External 100k max pull-up resistor is needed for safe ROM boot. Additional Serial MIDI Out.
WIIDI_OU12	90	DR8	3	External 100k max pull-up resistor is needed for safe ROM boot.
P0.13	98	I/O 5VT	3	General purpose I/O pin.
		DR8		External 100k max pull-up resistor is needed for safe ROM boot.
				If used as input, should not be driven low by external device while ROM boot.

4.3.6. Versatile IOs as primary function

Pin name	Pin#	Туре	Mem	Description
MICO MICAO	70.00	1/0	Cfg	Veneral 1/0 day (III a la Prin Prin Prin Prin Prin Prin Prin Prin
MK0-MK10	76-83, 112-114	I/O 5VT DR8	1-4	Versatile I/O pins, fully under P16 or P24 firmware control. e.g. in 2-contact keybed scanning use: Second Kbd contact
				/ switch status. When SEL0=1 then MK[0-10] holds the
				keyboard key-on or second contact status.
				When SEL0=0 then MK[0-10] gives the switch status from ROW[0-3].
D8-D15	76-83	I/O 5VT	1-4	Host parallel interface upper data bits when pin A1 = 1
		DR8		(mode 1)
A1	112	In svt	1-4	Host parallel interface address 1:
				A1=0 selects mode 0 for communication/control
XFR_RDY	113	Out drs	1-4	A1=1 selects mode 1 for fast 8/16bit data transfer Host parallel interface "Transfer Ready" output. When A1 =
AFK_KDT	113	Outbrs	1-4	1, this pin is reflecting status of current data read/write. Before beginning next read/write, host has to check XFR_RDY is 1
DAAD0	114	In ₅ VT	1-4	Stereo audio digital input 0, I2S or MSB format.
BR0	142	I/O 5VT	6	Versatile I/O pins, fully under P16 or P24 firmware control.
		DR12		e.g. in 2-contact keybed scanning use: First Kbd contact /
BR1-BR10	143-146,	I/O 5VT		Led data. When SEL0=1 then BR[0-10] holds the keyboard
	150-152,	DR8		key-off or first contact status.
	84-86			When SEL0=0 then BR[0-10] holds the led data from
DAAD7	142	In _{5VT}	6	ROW[0-3]. Stereo audio digital input 7, I2S or MSB format.
DABD7	143	Out Drs	6	Stereo audio digital niput 7, I2S or MSB format.
DAAD6	144	In 5VT	6	Stereo audio digital input 6, I2S or MSB format.
DABD6	145	Out DR8	6	Stereo audio digital output 6, I2S or MSB format.
DABD3	146	Out DR8	6	Stereo audio digital output 3, I2S or MSB format.
DAAD2	150	In syr	6	Stereo audio digital input 2, I2S or MSB format.
DAAD1	151	In ₅ VT	6	Stereo audio digital input 1, I2S or MSB format.
XCLBD1	152	In svt	6	External clock bit 1 for digital audio inputs DAAD[7:0].
XWSBD1	84	In _{5VT}	6	External word sel. Clock 1 for digital audio inputs DAAD[7:0].
XCLBD0	85	In svt	6	External clock bit for digital audio inputs DAAD[7:0].
XWSBD0	86	In 5VT	6	- External word select clock 0 for digital audio inputs
				DAAD[7:0].
				- Word Clock input for audio sync. on external clock device.
ROW0-	10-13	I/O 5VT	1-4	Versatile I/O pins, fully under P16 or P24 firmware control.
ROW3		DR8		e.g. in 2-contact keybed scanning use: ROW signals select
				keyboard, switches/Leds row and external slider analog
				multiplexer (4051) channel. Sixteen rows combined with eleven BR/MK columns allow to control 176 keys, 176
				switches, 88 Leds and 16 sliders.
DAAD5	10	In _{5VT}	1-4	Stereo audio digital input 5, I2S or MSB format.
DABD4	11	Out DR8	1-4	Stereo audio digital output 4, I2S or MSB format.
DABD5	12	Out DR8	1-4	Stereo audio digital output 5, I2S or MSB format.
DAAD4	13	In svt	1-4	Stereo audio digital input 4, I2S or MSB format.
SEL0-SEL1	93-94	I/O 5VT	1-4	Versatile I/O pins, fully under P16 or P24 firmware control.
		DR8		e.g. in 2-contact keybed scanning use: If SEL0=1, BR[0-10]
				& MK[0-10] hold keyboard contact input data. If SEL0=0
				MK[0-10] holds switch status input, BR[0-10] holds led data
				output.
				Sel1 can be used in case of kbd, with other matrix than
	00	ļ	1 1	8*11, multiple kbd or kbd with 3 switches per key.
DAAD3	93	In svT	1-4	Stereo audio digital input 3, I2S or MSB format.
DABD0	94	Out drs	1-4	Stereo audio digital output 0, I2S or MSB format.

4.3.7. Common Memory bus as primary function

Memory bus has a common part made of MD0-MD15 and MA0-MA15 that can be shared between different memory interfaces in some Memory Config.

- In Memory Config 1, MD0-MD15, MA0-MA15 is shared between SDRAM and NOR Flash.
- In Memory Config 2, MD0-MD15, MA0-MA15 is shared between SRAM and NOR Flash.
- In Memory Config 3, MD0-MD15, MA0-MA15 is only dedicated to SDRAM.
- In Memory Config 4, MD0-MD15, MA0-MA15 is only dedicated to SRAM.

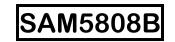
Pin name	Pin#	Туре	Mem Cfg	Description
MA0-MA15	29-32, 62-67, 69-74	Out MEM	1-4	Common Address bits for external SRAM and NOR Flash memories, up to 1Mbit (64kx16). Address (MA0-MA13) and Bank address (MA14,MA15) for external SDRAM memory.
P10.0-P10.15	29-32, 62-67, 69-74	I/O MEM SR3	1-4	General purpose I/O pin.
MD0-MD15	42-45, 48-53, 55-60	І/О мем	1-4	Common Data bus for external SRAM, SDRAM and NOR Flash memory.
P9.0-P9.15	42-45, 48-53, 55-60	І/О мем	1-4	General purpose I/O pin.

4.3.8. SDR as primary function

Pin name	Pin#	Туре	Mem Cfg	Description
DRCAS/	22	Out MEM	1,3	Column address strobe for external SDRAM memory
DRRAS/	23	Out мем	1,3	Row address strobe for external SDRAM memory
DRWE/	24	Out мем	1,3	Write enable for external SDRAM memory
DRCKE	25	Out mem	1,3	Clock Enable for external SDRAM memory
DRDM0,	37,38	Out мем	1,3	Input/output mask for external SDRAM memory
DRDM1				
DRCK	41	Out MEM	1,3	Positive clock for external SDRAM memory
DRCS0/	26	Out мем	1,3	Chip select 0 for external SDRAM memory
SPICS1/	26	Out мем	1,3	Chip select 1 for Multi-purpose Quad SPI interface.
P3.4	26	I/O MEM SR7	1,3	General purpose I/O pin
DRCS1/	27	Out мем	1,3	Chip select 1 for external SDRAM memory
XIO/_DBGCS/	27	Out мем	1	If normal mode: Extended chip select
				If debug mode: Chip select for debug in external SRAM External 100k pull-up resistor is needed for safe ROM boot.
P3.5	27	I/O MEM SR7	1,3	General purpose I/O pin

4.3.9. NOR Flash and SRAM as primary function

Pin name	Pin#	Туре	Mem Cfg	Description
MA16-MA18	97-99	Out drs	1,2,4	Address bits for external SRAM and NOR Flash memories, extension to 8Mbits (512kx16).
P1.0-P1.2	97-99	I/O 5VT (PD) DR8 SR3	1,2,4	General purpose I/O pin.
MA19-MA26	102 104-110	Out drs	1,2	Address bits for external SRAM and NOR Flash memory, up to 2Gbit (256MByte).
XFR_RDY	109	Out drs	1,2	Host parallel interface "Transfer Ready" output. When A1 = 1, this pin is reflecting status of current data read/write. Before beginning next read/write, host has to check XFR_RDY is 1
A1	110	In 5VT	1,2	Host parallel interface address 1: A1=0 selects mode 0 for communication/control A1=1 selects mode 1 for fast 8/16bit data transfer
P1.3-P1.10	102, 104-110	I/O 5VT (PD) DR8 SR3	1,2	General purpose I/O pin.
MWE/	100	Out dr12	1,2,4	External SRAM and NOR Flash memories write enable, active low.
P1.11	100	I/O (PU) DR12 SR3	1,2,4	General purpose I/O pin.
MOE/	101	Out drs	1,2,4	External SRAM and NOR Flash memory output enable, active low.
P1.12	101	I/O 5VT (PU) DR8 SR3	1,2,4	General purpose I/O pin.
NRCS0/	19	Out dr4	1,2	External NOR Flash memory chip select 0, active low.
P1.13	19	I/O (PU) DR4 SR3	1,2	General purpose I/O pin.
NRCS1/	20	Out dr12	1,2	External NOR Flash memory chip select 1, active low.
P1.14	20	I/O (PU) DR12	1,2	General purpose I/O pin.
SRCS/	95	Out dr4	2,4	External SRAM memory chip select, active low.
P1.15	95	I/O (PU) DR4	2,4	General purpose I/O pin.


4.3.10. NAND Flash as primary function

Pin name	Pin#	Туре	Mem Cfg	Description
NDIO0-NDIO6	153-159	I/O drs	3,4	Data bus for external 8-bit NAND Flash memory.
NDIO7	160	I/O dr4		
NDCE0/	134	Out DR12	3,4	External NAND Flash memory chip select 0, active low
NDCE1/	135	Out dr4	3,4	External NAND Flash memory chip select 1, active low
P3.12	135	I/O (PU) DR4	3,4	General purpose I/O pin.
NDR B/	136	In svt	3,4	External NAND Flash Ready Busy/ status. Indicates target array activity. External pull-up resistor is needed if NAND Flash R B/ is open-drain output.
NDALE	137	Out drs	3,4	External NAND Flash Address Latch Enable. Load an address from I/O[7:0] into the address register.
NDCLE	138	Out drs	3,4	External NAND Flash Command Latch Enable. Load a command from I/O[7:0] into the command register
NDWE/	139	Out drs	3,4	External NAND Flash Write Enable. Transfer commands, address, and serial data from SAM5808B to the NAND Flash.
NDRE/	140	Out dr4	3,4	External NAND Flash Read Enable. Transfer serial data from the NAND Flash to SAM5808B.

4.3.11. Digital Audio as primary function

Pin name	Pin#	Туре	Mem Cfg	Description
CKOUT	133	Out dr4	1-4	Audio master clock for external DAC and ADC. Can be programmed to be 128xFs, 192xFs, 256xFs, 384xFs, 512xFs, 768xFs, Fs being the DAC and ADC sampling rate.
MC0	133	In	1-4	Memory Config 0. This pin is sensed at power up. MC1 MC0 setting allows boot ROM code to start the right Memory Config.
CLBD	87	Out dr4	1-4	Audio bit clock for DABD0-DABD7 and for DAAD0-DAAD7.
FS1	87	In	1-4	Freq. Sense 1, sensed at power up. FS1 FS0 allows boot ROM code to know operating freq. on oscillator OSC1 as follow: 00->12MHz 01->9.6MHz, 11->12.288MHz
WSBD	88	I/O dr4	1-4	Out by default: Audio left/right channel select for DABD0-DABD7 and for DAAD0-DAAD7. In: WSBD from external master audio device for full audio sync without external VCXO. Same Master clock is needed on SAM5808B and external master device.
FS0	88	In	1-4	Freq. Sense 0, sensed at power up. FS1 FS0 allows boot ROM code to know operating freq on oscillator OSC1 (see FS1).
DAAD0	135	In (PD)	1,2	Stereo audio digital input 0, I2S or MSB format.
SPDIF_IN	135	In (PD)	1,2	SPDIF input.
P2.0	135	I/O (PD) DR4	1,2	General purpose I/O pin.
DAAD0	19	In (PD)	3,4	Stereo audio digital input 0, I2S or MSB format.
SPDIF_IN	19	In (PD)	3,4	SPDIF input.
P2.0	19	I/O (PD) DR4	3,4	General purpose I/O pin.

Pin name	Pin#	Туре	Mem Cfg	Description
DAAD1	27	In mem	2,4	Stereo audio digital input 1, I2S or MSB format.
PWM_OUT	27	Outмем	2,4	Pulse Width Modulation Output for main clock enslavement on clock from SPDIF In or USB Audio
P2.1	27	I/O MEM (PD)	2,4	General purpose I/O pin.
DAAD2	39	In mem	2,4	Stereo audio digital input 2, I2S or MSB format.
MIDI OUT2	39	Out мем	2,4	Additional Serial MIDI Out.
P2.2	39	I/O MEM (PD)	2,4	General purpose I/O pin.
DAAD3	140	In (PD)	2	Stereo audio digital input 3, I2S or MSB format.
P2.3	140	I/O (PD) DR4	2	General purpose I/O pin.
DAAD4	139	In svt (PD)	2	Stereo audio digital input 4, I2S or MSB format.
P2.4	139	I/O 5VT (PD) DR8	2	General purpose I/O pin.
DAAD5	136	In svt (PD)	2	Stereo audio digital input 5, I2S or MSB format.
P2.5	136	I/O 5VT (PD) DR8	2	General purpose I/O pin.
DABD0	134	Out dr12	1,2	Stereo audio digital output 0, I2S or MSB format.
SPDIF_OUT	134	Out dr12	1,2	SPDIF output.
P2.15	134	I/O DR12	1,2	General purpose I/O pin.
DABD0	20	Out dr12	3,4	Stereo audio digital output 0, I2S or MSB format.
SPDIF_OUT	20	Out dr12	3,4	SPDIF output.
P2.15	20	I/O DR12	3,4	General purpose I/O pin.
DABD1	95	Out dr4	1,3	Stereo audio digital output 1, I2S or MSB format.
XIO/_DBGCS/	95	Out dr4	1,3	If normal mode: Extended chip select If debug mode: Chip select for debug in external SRAM.
P2.8	95	I/O (PU) DR4	1,3	General purpose I/O pin.
DABD1	38	Out MEM	2,4	Stereo audio digital output 1, I2S or MSB format.
XIO/_DBGCS/	38	Out mem	2,4	If normal mode: Extended chip select
			,	If debug mode: Chip select for debug in external SRAM. External 100k pull-up resistor is needed for safe ROM boot.
P2.8	38	I/O MEM	2,4	General purpose I/O pin.
DABD2	41	Out мем	2,4	Stereo audio digital output 2, I2S or MSB format.
P2.9	41	I/O MEM	2,4	General purpose I/O pin.
DABD3	26	Out мем	2,4	Stereo audio digital output 3, I2S or MSB format.
P2.10	26	I/O MEM	2,4	General purpose I/O pin.
DABD4	137	Out drs	2	Stereo audio digital output 4, I2S or MSB format.
P2.11	137	I/O 5VT DR8	2	General purpose I/O pin.
DABD5	138	Out drs	2	Stereo audio digital output 5, I2S or MSB format.
P2.12	138	I/O 5VT DR8	2	General purpose I/O pin.

4.4. Primary & Secondary functions quick view

4.4.1. Key table

Function Code	Function description	Available in
<u>1</u>	Multi-purpose Quad SPI interface	Mem. Config. 1-4
<u>2</u>	Ethernet MAC	Mem. Config. 1-4
<u>3</u>	Host Parallel Interface (8-bit)	Mem. Config. 1-4
<u>4</u>	Host Parallel Interface extension	Mem. Config. 1-4
<u>5</u>	UART / MIDI interface	Mem. Config. 1-4
<u>6</u>	Debug interface	Mem. Config. 1-4
<u>7</u>	Serial Slave Synchronous interface	Mem. Config. 1-4
<u>8</u>	I2S Digital Audio Interface	Mem. Config. 1-4 (see Note1)
<u>9</u>	SPDIF Digital Audio Interface	Mem. Config. 1-4
<u>10</u>	Versatile IOs (VIO)	Mem. Config. 1-4
<u>11</u>	Common Memory Bus	Mem. Config. 1-4
<u>12</u>	SDRAM controller on Memory Port 0	Mem. Config. 1, 3
<u>13</u>	NOR Flash and SRAM Controller on Memory Port 0	Mem. Config. 1, 2, 4 (see Note2)
<u>14</u>	NAND FLASH Controller on Memory Port 1	Mem. Config. 3, 4
<u>15</u>	USB High Speed Host, Device or Dual-Role Port 0	Mem. Config. 1-4
<u>16</u>	USB High Speed Host only, Port 1	Mem. Config. 1-4

Note1: All Digital Audio Signals are not available for each Memory Configuration.

Note2: All Signals are not available for each Memory Configuration.

4.4.2. Functions per pin

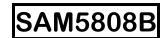
Function Code	Pin Name Primary Function	Function Code	Secondary Function	GPIO	Available in	
	TST				Config 1-4	
	RST/				Config 1-4	
	OSC2_X1-OSC2_X2				Config 1-4	
	VIN				Config 1-4	
<u>5</u>	MIDI_OUT1 (UART Tx)			P0,9	Config 1-4	
<u>5</u>	MIDI_IN1 (UART Rx)	<u>5</u>	MIDI_IN2	P0.14	Config 1-4	
<u>6</u>	STIN				Config 1-4	
<u>6</u>	STOUT	<u>5</u>	MIDI_IN2	P0.15	Config 1-4	
	Quad SPI					
<u>1</u>	SPICK		PWM_OUT	P7.14	Config 1-4	
<u>1</u>	SPICSO/			P7.15	Config 1-4	
<u>1</u>	SPIO (MOSI)	<u>9</u>	SPDIF_OUT	P7.10	Config 1-4	
<u>1</u>	SPI1 (MISO	<u>9</u>	SPDIF_IN	P7.11	Config 1-4	
<u>1</u>	SPI2		PWM_OUT	P7.12	Config 1-4	
<u>1</u>	SPI3	<u>9</u>	SPDIF_IN	P7.13	Config 1-4	
	Ethernet					
<u>2</u>	REF_CLK	<u>1</u>	SPICS1/	P8.0	Config 1-4	
<u>2</u>	ETH RES/	8	XWSBD1	P8.1	Config 1-4	
<u>2</u>	RX_ER	8	XCLBD1	P8.2/INTB	Config 1-4	
<u>2</u>	RXD0	<u>8</u>	DAAD6	P8.3	Config 1-4	
2	RXD1	<u>8</u>	DAAD7	P8.4	Config 1-4	
2	CRS_DV	<u>8</u>	DABD6	P8.5	Config 1-4	
2	TXD0	<u>8</u>	DABD7	P8.6	Config 1-4	
2	TXD1	<u>1</u>	SPICS2/	P8.7	Config 1-4	
2	TX_EN	<u>1</u>	SPICS3/	P8.8	Config 1-4	
2	MDC	<u>8</u>	XWSBD0	P8.9	Config 1-4	
<u>2</u>	MDIO	<u>8</u>	XCLBD0	P8.10	Config 1-4	
	Host Parallel Interface					
3	D0	8	DAAD2	P0.0	Config 1-4	
3	D1	<u>8</u>	DABD4	P0.1	Config 1-4	
3	D2	<u>8</u>	DABD3	P0.2	Config 1-4	
3	D3	<u>8</u>	DABD2	P0.3	Config 1-4	
3	D4	<u>8</u>	XWSBD1	P0.4	Config 1-4	
<u>3</u>	D5	<u> 8</u>	XCLBD1	P0.5	Config 1-4	
<u>3</u>	D6	<u>8</u>	XWSBD0	P0.6	Config 1-4	
3	D7	<u>8</u>	XCLBD0	P0.7	Config 1-4	
<u>3</u>	IRQ	<u>7</u>	SSINT/	P0.8/INTA	Config 1-4	
<u>3</u>	A0	<u> </u>	SSCLK	P0.10	Config 1-4	
<u>3</u>	CS/	<u>7</u>	SSYNC	P0.11	Config 1-4	
<u>3</u>	WR/	<u>7</u>	SSDIN	P0.12	Config 1-4	
<u>3</u>	RD/	<u>5</u>	MIDI_OUT2	P0.13	Config 1-4	

(To be continued)

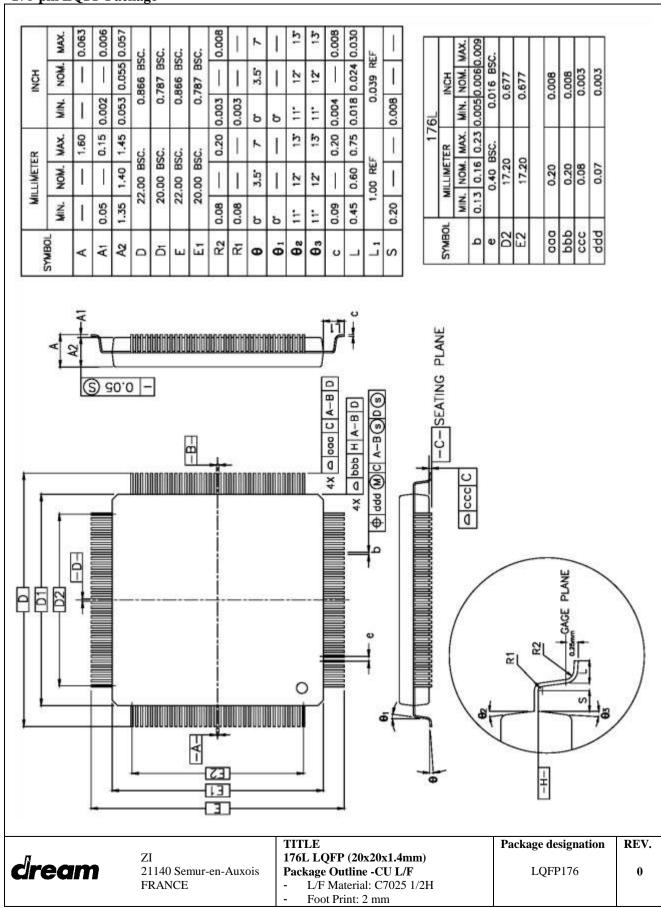
SAM5808B

(Continued)

			Secondary		Available in
Function Code	Pin Name Primary Function	Function Code	Function	GPIO	
Code		Code	<u>i</u>		
	Versatile IOs	_			- 6
<u>10</u>	MK0-MK7	4	D8-D15		Config 1-4
<u>10</u>	MK8	<u>4</u>	A1		Config 1-4
<u>10</u>	MK9	<u>4</u>	XFR_RDY		Config 1-4
<u>10</u>	MK10	<u>8</u>	DAAD0		Config 1-4
<u>10</u>	BR0	<u>8</u>	DAAD7		Config 1-4
<u>10</u>	BR1	<u>8</u>	DABD7		Config 1-4
<u>10</u>	BR2	<u>8</u>	DAAD6		Config 1-4
<u>10</u>	BR3	<u>8</u>	DABD6		Config 1-4
<u>10</u>	BR4	<u>8</u>	DABD3		Config 1-4
<u>10</u>	BR5	<u>8</u>	DAAD2		Config 1-4
<u>10</u>	BR6	<u>8</u>	DAAD1		Config 1-4
<u>10</u>	BR7	<u>8</u>	XCLBD1		Config 1-4
<u>10</u>	BR8	<u>8</u>	XWSBD1		Config 1-4
<u>10</u>	BR9	<u>8</u>	XCLBD0		Config 1-4
<u>10</u>	BR10	<u>8</u>	XWSBD0		Config 1-4
<u>10</u>	ROW0	<u>8</u>	DAAD5		Config 1-4
<u>10</u>	ROW1	<u>8</u>	DABD4		Config 1-4
<u>10</u>	ROW2	<u>8</u>	DABD5		Config 1-4
<u>10</u>	ROW3	<u>8</u>	DAAD4		Config 1-4
<u>10</u>	SEL0	<u>8</u>	DAAD3		Config 1-4
<u>10</u>	SEL1	<u>8</u>	DABD0		Config 1-4
	Common Memory Bus				
11	MA0-MA15			P10.0-P10.15	Config 1-4
11	MD0-MD15			P9.0-P9.15	Config 1-4
	SDR / DDR				
12	SDR / DDR DRCAS/				Config 1, 3
<u>12</u> 12	DRCAS/				Config 1, 3
<u>12</u>	DRCAS/ DRRAS/				Config 1, 3
12 12	DRCAS/ DRRAS/ DRWE/				Config 1, 3 Config 1, 3
12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE				Config 1, 3 Config 1, 3 Config 1, 3
12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0				Config 1, 3 Config 1, 3 Config 1, 3 Config 1, 3
12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1				Config 1, 3
12 12 12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK	1	SPICS1/	P3.4	Config 1, 3
12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1	<u>1</u>	SPICS1/ XIO/_DBGCS/	P3.4 P3.5	Config 1, 3
12 12 12 12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCS0/ DRCS1/	1	•		Config 1, 3
12 12 12 12 12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM	<u>1</u>	•	P3.5	Config 1, 3
12 12 12 12 12 12 12 12 12 12	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18	<u>1</u>	•	P3.5 P1.0-P1.2	Config 1, 3
12 12 12 12 12 12 12 12 12 12 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24		XIO/_DBGCS/	P3.5 P1.0-P1.2 P1.3-P1.8	Config 1, 3 Config 1, 2
12 12 12 12 12 12 12 12 12 12 13 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24 MA25	<u>4</u>	XIO/_DBGCS/ XFR_RDY	P3.5 P1.0-P1.2 P1.3-P1.8 P1.9	Config 1, 3 Config 1, 2 Config 1, 2, 4 Config 1, 2 Config 1, 2
12 12 12 12 12 12 12 12 12 13 13 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24 MA25 MA26		XIO/_DBGCS/	P3.5 P1.0-P1.2 P1.3-P1.8 P1.9 P1.10	Config 1, 3 Config 1, 2
12 12 12 12 12 12 12 12 12 13 13 13 13 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24 MA25 MA26 MWE/	<u>4</u>	XIO/_DBGCS/ XFR_RDY	P3.5 P1.0-P1.2 P1.3-P1.8 P1.9 P1.10 P1.11	Config 1, 3 Config 1, 2
12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24 MA25 MA26 MWE/ MOE/	<u>4</u>	XIO/_DBGCS/ XFR_RDY	P3.5 P1.0-P1.2 P1.3-P1.8 P1.9 P1.10 P1.11 P1.12	Config 1, 3 Config 1, 2 Config 1, 2, 4 Config 1, 2, 4
12 12 12 12 12 12 12 12 12 13 13 13 13 13	DRCAS/ DRRAS/ DRWE/ DRCKE DRDM0 DRDM1 DRCK DRCSO/ DRCS1/ NOR Flash and SRAM MA16-MA18 MA19-MA24 MA25 MA26 MWE/	<u>4</u>	XIO/_DBGCS/ XFR_RDY	P3.5 P1.0-P1.2 P1.3-P1.8 P1.9 P1.10 P1.11	Config 1, 3 Config 1, 2


(To be continued)

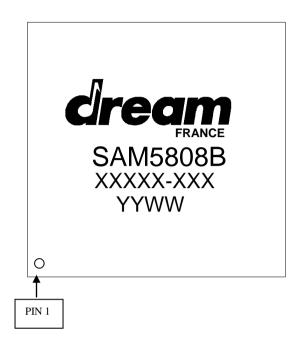
SAM5808B

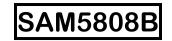

(Continued)

<u>Function</u>	Pin Name	Function	Secondary Function	GPIO	Available in
<u>Code</u>	Primary Function	Code			
	NAND Flash				
<u>14</u>	NDIO0-NDIO7				Config 3, 4
<u>14</u>	NDCE0/				Config 3, 4
<u>14</u>	NDCE1/			P3,12	Config 3, 4
<u>14</u>	NDR B/				Config 3, 4
<u>14</u>	NDALE				Config 3, 4
<u>14</u>	NDCLE				Config 3, 4
<u>14</u>	NDWE/				Config 3, 4
<u>14</u>	NDRE/				Config 3, 4
	Digital Audio				
<u>8</u>	СКОИТ				Config 1-4
<u>8</u>	WSBD				Config 1-4
<u>8</u>	CLBD				Config 1-4
<u>8</u>	DAAD0	<u>9</u>	SPDIF_IN	P2.0	Config 1-4
<u>8</u>	DAAD1		PWM_OUT	P2.1	Config 2, 4
<u>8</u>	DAAD2	<u>5</u>	MIDI_OUT2	P2.2	Config 2, 4
<u>8</u>	DAAD3			P2.3	Config 2
<u>8</u>	DAAD4			P2.4	Config 2
<u>8</u>	DAAD5			P2.5	Config 2
<u>8</u>	DABD0	<u>9</u>	SPDIF_OUT	P2,15	Config 1-4
<u>8</u>	DABD1		XIO/_DBGCS/	P2.8	Config 1-4
<u>8</u>	DABD2			P2.9	Config 2, 4
<u>8</u>	DABD3			P2.10	Config 2, 4
<u>8</u>	DABD4			P2.11	Config 2
<u>8</u>	DABD5			P2.12	Config 2
	USB Port 0				
<u>15</u>	OSC1_X1-OSC1_X2				Config 1-4
<u>15</u>	USBDP0-USBDM0				Config 1-4
<u>15</u>	USBREF0				Config 1-4
<u>15</u>	USBID	<u>5</u>	MIDI_OUT2	P8,15	Config 1-4
	USB Port 1				
<u>16</u>	USBDP1-USBDM1				Config 1-4
<u>16</u>	USBREF1				Config 1-4
	Pure GPIOs				
	P3.8			P3.8	Config 1, 3

5. Mechanical dimensions

176-pin LQFP Package





6. Marking

LQFP176

dream

7. Electrical Characteristics

7.1. Absolute Maximum Ratings(*)

Parameter	Symbol	Min	Тур	Max	Unit
Temperature under bias	-	-55	-	+125	°C
Storage temperature	-	-65	-	+150	°C
Voltage on 5 volt tolerant pin (5VT):	-	-0.3	-	5.5	V
Voltage on pin supplied by VM (MEM):	-	-0.3	-	VM+0.3	V
Voltage on standard pin supplied by VD33:	-	-0.3	-	VD33+0.3	V
Supply voltage	VD12	-0.3	-	1.32	V
	VC12	-0.3	-	1.32	V
	VD33	-0.3	_	3.63	V
	VM	-0.3	-	3.63	V

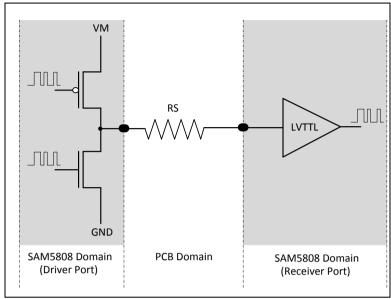
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7.2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Core supply voltage	VD12	1.1	1.2	1.3	V
PLL supply voltage	VC12	1.1	1.2	1.3	V
Periphery supply voltage	VD33	3	3.3	3.6	V
ADC supply voltage	VA33	3	3.3	3.6	V
Memory pads Supply voltage	VM	3	3.3	3.6	V
Operating ambient temperature	tA	0	-	70	°C
Pull Resistor on MC[1:0] and FS[1:0] pins	RCFG	4.7k	10k	22k	Ohm

7.2.1. Memory pads

Memory pads (MEM) of SAM5808B are LVTTL compliant. They allow direct interfacing with SDR SDRAM devices.


Output Drive Strength of memory pads can be selected by firmware between Low, Medium or High (default).

Output Slew rate of memory pads can be selected between Fast (default) and Slow.

7.2.1.1. SDR SDRAM, FLASH, SRAM OR GPIO OPERATION (LVTTL mode)

When using SDR SDRAM, FLASH, SRAM or GPIO signals, it is recommended to use the following schematic for each connected memory pad.

VM = 3.3V RS = 10 Ohm

RS should be implemented in the middle of the lead-in or close to the transmitting device.

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	VM	3	3.3	3.6	V
Serial resistor: High drive output	RS	8.2	10	12	Ohm

7.3. D.C. Characteristics (TA=25°C, VD12=VC12=1.2V±10%, VD33=3.3V±10%)

7.3.1. Memory pins in LVTTL mode (VM=3.3V±10%)

Parameter	Symbol	Min	Тур	Max	Unit
Low level input voltage	VIL	-	-	0.8	V
High level input voltage	VIH	2	-	-	V
Low level output voltage (IOL =20mA)	VOL	-	-	0.4	V
High level output voltage (IOH = 20mA)	VOH	2.4	-	-	V
Built-in pull-down resistor	RD	40	75	190	kOhm

7.3.2. Standard LVTTL pins

Parameter	Symbol	Min	Тур	Max	Unit
Low level input voltage	VIL	-	-	0.8	V
High level input voltage on 5VT pins	VIH	2	-	-	V
High level input voltage on non 5VT pins	VIH	2	-	-	V
Low level output voltage (IOL =4 ~ 12mA)	VOL	-	-	0.4	V
High level output voltage (IOH =4 ~ 12mA	VOH	2.4	-	-	V
Schmitt-trigger negative-to-threshold voltage (RST/ pin)	VTN	0.8	1.1	-	V
Schmitt-trigger positive-to-threshold voltage (RST/ pin)	VTP	-	1.6	2	V
Driving capability at VOL, VOH for DR4 pins	IOHL	-	-	4	mA
Driving capability at VOL, VOH for DR8 pins	IOHL	-		8	mA
Driving capability at VOL, VOH for DR12 pins	IOHL	-		12	mA
Input leakage current	IIN	_	±1	±10	μA
Built-in pull-up / pull-down resistor	RUD	40	75	190	kOhm

7.3.3. Analog I/O pins (USBDP0, USBDM0, USBDP1, USBDM1)

Parameter	Symbol	Min	Тур	Max	Unit
High-speed differential input sensitivity	VHSDIF	300	-	-	mV
VI(USBDP)-VI(USBDM)					
Voltage range input of the high-speed data	VHSCM	-50	-	500	mV
signaling in the common mode					
High-speed idle-level output voltage (Differential)	VHSOI	-10	-	10	mV
High-speed low-level output voltage (Differential)	VHSOL	-10	-	10	mV
High-speed high-level output voltage (Differential)	VHSOH	-360	-	400	mV
Driver output impedance.	RDRV	40.5	45	49.5	Ohm

7.3.4. General Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
OUTVC12 output voltage	VD12	1.14	1.2	1.26	V
VD33 power supply current in warm power down	ID33	-	8.9	-	mA
(PLL stopped, Sys clk = 12.288MHz crystal, all					
P24 stopped)					
VD33 power supply current in reset mode	ID33	-	3.6	-	mA
(RST/=0)					
VD33 power supply current (crystal freq.= 12.288	ID33		101		mA
MHz, all P24 stopped)					
VD33 power supply current (crystal freq.= 12.288	ID33		180		mA
MHz, all P24 running)					
VM power supply current (crystal freq.= 12.288	IDM	21	-	44	mA
MHz, VM=3.3V, SDR SDRAM)					
VM power supply current in reset mode	IDM	-	-	<1	μA
VA33 power supply current	IA33	-	3.2	-	mA
(ADC running @ 11MHz)					
VA33 power supply current in reset mode	IA33	-	-	<1	μΑ
USB Full Speed current (One USB port active)	ID33U	-	18	-	mA
USB High Speed current (One USB port active)	ID33U	-	29	-	mA
Ethernet MAC current	ID33E	-	15	-	mA

7.4. ADC Characteristics

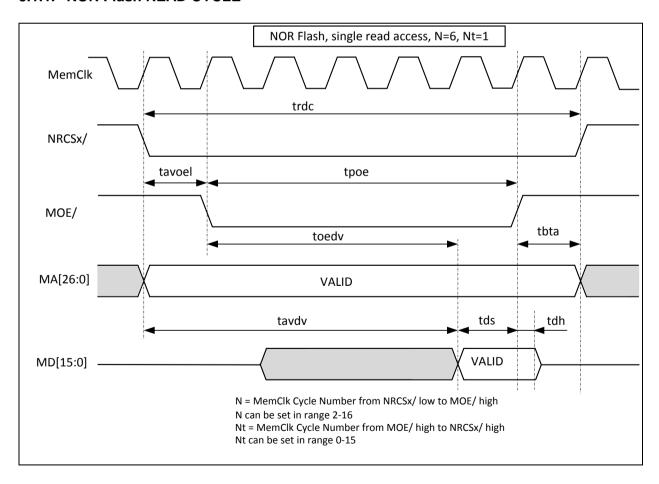
Parameter	Symbol	Min	Тур	Max	Unit
Analog bottom internal reference voltage	VRefN	-	100	150	mV
Analog top internal reference voltage	VRefP	VA33-175	VA33-125	-	mV
Resolution	RES	-	10	-	bit
Integral non-linearity error	INL	-2	±1	+2	LSB
Clock frequency	ADCCK	1	-	11	MHz
Sampling Rate	ADCSR	-	-	1	MSps

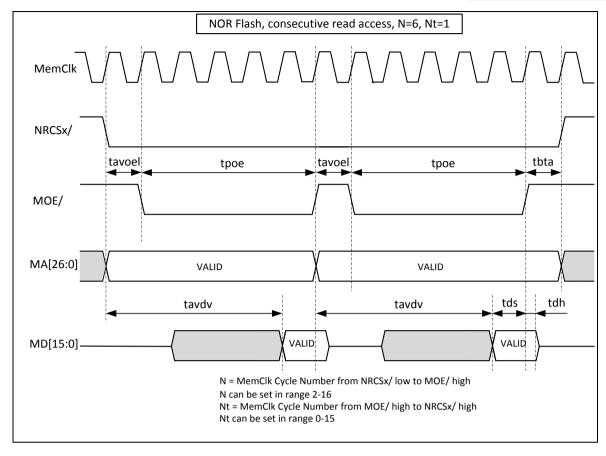
8. Peripherals and Timings

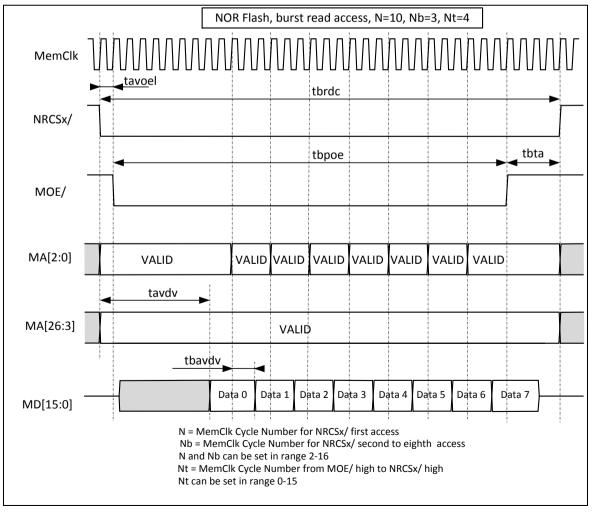
A built-in PLL multiplies the Xtal clock frequency by a variable multiplication factor (typ. x16) to generate the internal chip system clock ("SysClk", typ. 196.6MHz @ 12.288MHz quartz). "spck" is the period of the internal clock. Typical value with Xtal = 12.288 MHz is spck = 5.1 ns.

Another clock MemClk is generated from SysClk for NOR Flash, SRAM and SDRAM controllers. mpck is the period of MemClk.

mpck = spck or spck*2. Typical values with Xtal = 12.288 MHz are mpck = 10.2 ns or 5.1 ns.

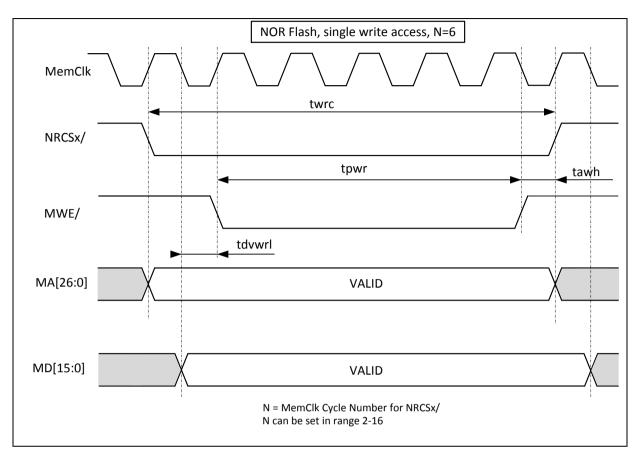

8.1. NOR Flash external memory

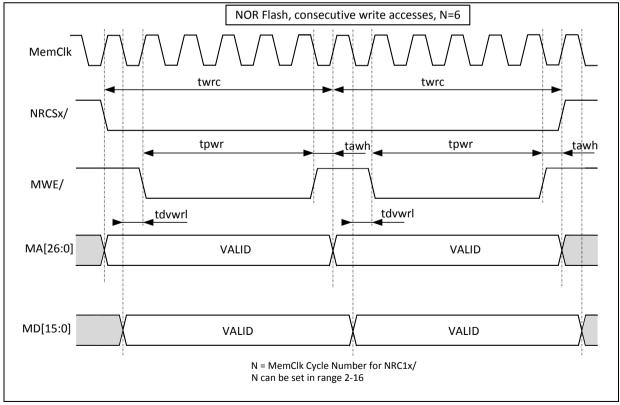

Pins used:


MA26-MA0: Address out MD15-MD0: Data bi-directional NRCS0/, NRCS1/: chip select

MOE/: Output enable MWE/: Write enable

8.1.1. NOR Flash READ CYCLE


Parameter	Symbol	Min	Тур	Max	Unit
Read cycle time	trdc	-	(N+Nt)*mpck	-	ns
Read cycle time in burst mode	tbdrc	-	(N+7*Nb+Nt)*mpck	-	ns
Output enable pulse width	tpoe	(N-1)*mpck - 2.5	(N-1)*mpck	-	ns
Output enable pulse width in	tbpoe	(N-1+7*Nb)*mpck-2.5	(N-1+7*Nb)*mpck	-	ns
burst mode					
Chip select/address valid to data	tavdv	0	-	N*mpck-8.5	ns
valid					
Chip select/address valid to data	tbavdv	0	-	Nb*mpck-8.5	ns
valid in burst mode, access 2 to 8					
Output enable valid to data valid	toedv	0	-	(N-1)*mpck-8.5	ns
Data setup	tds	6	-	-	ns
Data hold	tdh	0	-	-	ns
Bus turnaround delay	tbta	0	Nt*mpck	-	ns
Chip select/address valid to	tavoel	-	mpck	-	ns
WOE/ low					


Notes:

- MemClk period = mpck
- NOR Flash random access time should be lower than tavdv Max + tds Min.
- NOR Flash page access time should be lower than tbavdv Max + tds Min.

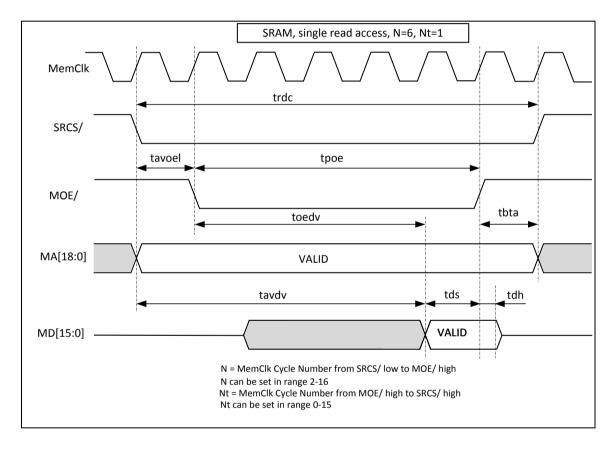
8.1.2. NOR Flash WRITE CYCLE

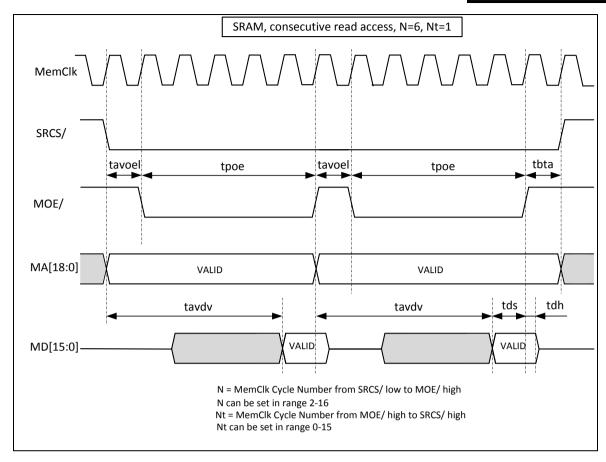
Parameter	Symbol	Min	Тур	Max	Unit
Write cycle time	twrc	-	N*mpck	-	ns
Write pulse width	tpwr	(N-1.5)*mpck - 2.5	(N-1.5)*mpck		ns
Data valid to MWE/ low	tdvwrl	0.5*mpck	-	-	ns
Address out hold time	tawh	0.5*mpck- 1.5	-	-	ns

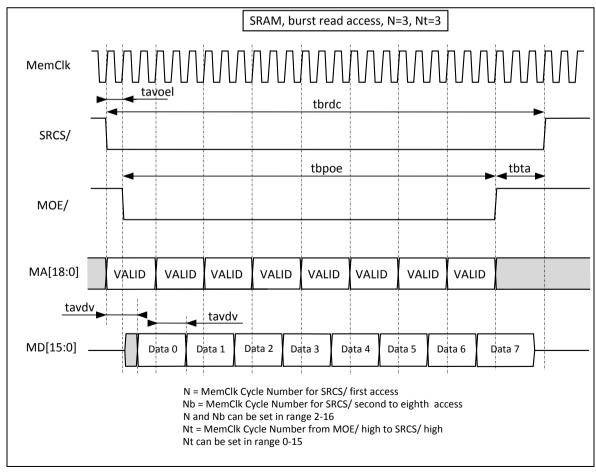
Notes:

- MemClk period = mpck

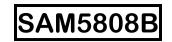
8.2. SRAM external memory

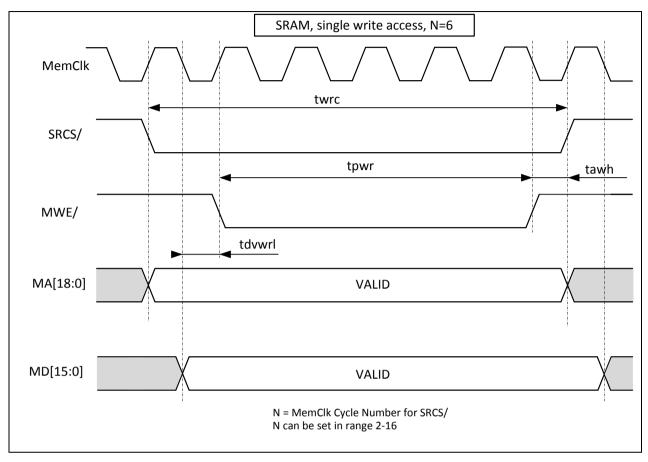

Pins used:

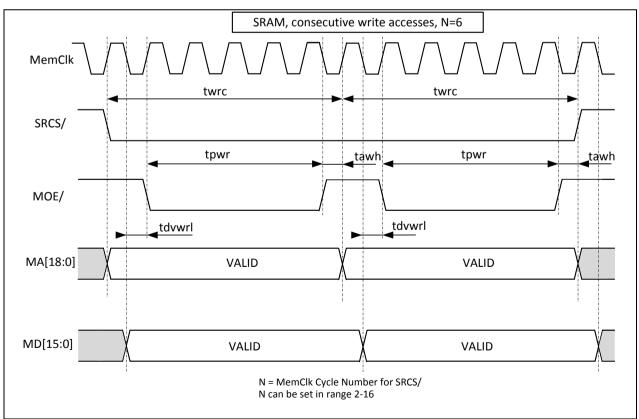

MA18-MA0: address out MD15-MD0: data bi-directional


SRCS/: chip select MOE/: output enable MWE/: write enable

When using all address bits MA18-MA0, the maximum addressing range is 512 k x16 (8 Mbit).


8.2.1. SRAM READ CYCLE


Parameter	Symbol	Min	Тур	Max	Unit
Read cycle time	trdc	-	(N+Nt)*mpck	-	ns
Read cycle time in burst mode	tbdrc	-	(N+7*Nb+Nt)*mpck	-	ns
Output enable pulse width	tpoe	(N-1)*mpck - 2.5	(N-1)*mpck	-	ns
Output enable pulse width in	tbpoe	(N-1+7*Nb)*mpck-2.5	(N-1+7*Nb)*mpck	-	ns
burst mode					
Chip select/address valid to data	tavdv	0	-	N*mpck-8.5	ns
valid					
Output enable valid to data valid	toedv	0	-	(N-1)*mpck-8.5	ns
Data setup	tds	6	-	-	ns
Data hold	tdh	0	-	-	ns
Bus turnaround delay	tbta	0	Nt*mpck	-	ns
Chip select/address valid to	tavoel	-	mpck	-	ns
WOE/ low					


Notes:

- MemClk period = mpck
- SRAM access time should be lower than tavdv Max + Tds Min.

8.2.2. SRAM WRITE CYCLE

Parameter	Symbol	Min	Тур	Max	Unit
Write cycle time	twrc	-	N*mpck	-	ns
Write pulse width	tpwr	(N-1.5)*mpck - 2.5	(N-1.5)*mpck		ns
Data valid to MWE/ low	tdvwrl	0.5*mpck	-	-	ns
Address out hold time	tawh	0.5*mpck- 1.5	-	-	ns

Notes:

- MemClk period = mpck

8.3. External SDRAM memory

8.3.1. Overview

Following memories can be connected to the SAM5808B:

- SDR SDRAM, 16- bit wide

One or two devices can be connected on chip select DRCS0/-DRCS1/.

The type of connection is LVTTL for SDRAM.

SDR SDRAM use time multiplexed addressing with a ROW/COL scheme. MA15-MA0 are used for SDRAM.

8.3.2. Address multiplexing

Number of column address bit can be set in range 8-11. Number of row address bit can be set in range 11-14.

8.3.3. Address connection

Below is connecting table for SDR-SDRAM device:

SDRAM address	SAM5808B address
DA0	MA0
DA1	MA1
DA2	MA2
DA3	MA3
DA4	MA4
DA5	MA5
DA6	MA6
DA7	MA7
DA8	MA8
DA9	MA9
DA10	MA10
DA11	MA11
DA12 (if available)	MA12
DA13 (if available)	MA13
BA0	MA14
BA1	MA15

8.3.4. Address mapping examples

Example below show mapping between SAM5808B SDR address pins and address bits on SAM5808B internal ASYNC bus.

SDR SDRAM 16-bit wide, 64 Mbit, 12 Row addressing, 8 Column addressing

SAM5808B address	ASYNC bus address bits				
pins	Value at RAS	Value at CAS			
DRA0	AAD10	AAD0			
DRA1	AAD11	AAD1			
DRA2	AAD12	AAD2			
DRA3	AAD13	AAD5			
DRA4	AAD14	AAD6			
DRA5	AAD15	AAD7			
DRA6	AAD16	AAD8			
DRA7	AAD17	AAD9			
DRA8	AAD18	Don't care			
DRA9	AAD19	Don't care			
DRA10	AAD20	Auto-precharge			
DRA11	AAD21	Don't care			
DRBA0	AAD3	AAD3			
DRBA1	AAD4	AAD4			

8.3.5. Pinning

SAM5808B pin	SDR pin	Description
MA[13-0]	A[13-0]	Address
MA15, MA14	BA1, BA0	Bank address
MD[15-0]	DQ[15-0]	Data
DRDM1	DQMH	Data mask (DQ15DQ8)
DRDM0	DQML	Data mask (DQ7DQ0)
DRCK	CK	Clock
DRCKE	CKE	Clock enable
DRCS[1-0]	CS/	Chip select. Up to 2 devices
DRCAS/	CAS/	Command
DRRAS/	RAS/	
DRWE/	WE/	

8.3.6. Timing

General parameters

The SDR SDRAM is used with following parameters

Parameter		Symbol	Available setting	Recommended setting
Clock cycle time		tCK	5.1ns@196.6MHz, 10.2ns@98.3MHz	10.2ns@98.3MHz
Mode Register	CAS Latency	CL	2 cycles	2 cycles
	Burst length		8 data	8 data
	Burst type		sequential	sequential
	Operating mode		normal	normal
Read delay		RDDEL	0 to 7	≥ 3
(programmed in SAMS	5808B SDRAM controller)			

SDR timing at 100MHz

Timing	Min	Max	To check in SDR spec
DRCK period	10 ns (100 MHz)		tCK(min)≤10 ns
Control signals output setup to rising DRCK	2.5 ns		tAS(min)≤2.5 ns
(Control signals are DRA[13:0], DRBA[1:0], DRCS/[3:0],			tCKS(min)≤2.5 ns
DRCKE, DRRAS/, DRCAS/, DRWE/)			tCMS(min)≤2.5 ns
Control signals output hold from rising DRCK	1.8 ns		tAH(min)≤2.5 ns
(Control signals are DRA[13:0], DRBA[1:0], DRCS/[3:0],			tCKH(min)≤2.5 ns
DRCKE, DRRAS/, DRCAS/, DRWE/)			tCMH(min)≤2.5 ns
Data output setup to rising DRCK (write)	2.3 ns		tDS(min)≤2.3 ns
MD[15:0]			, ,
DRDM[1:0]			
Data output and DQM hold from rising DRCK (write)	1.6 ns		tDH(min)≤1.6 ns
(Data Output signals are DRDQ[15:0])			, ,
(DQM signals areDRDM[1:0]			
Data input delay from rising DRCK (read)	2 ns	6.4 ns	tAC(max)≤6.4 ns
(Data Input signals are DRDQ[15:0])			tOH(min)≥2 ns
Active bank A to Active bank B	8 clock cycles		tRRD(min)≤8 x tCK
Mode Register Set command cycle time	2 clock cycles		tMRD(min) ≤2 x
			tCK `´´
Precharge command period during initialization	4 clock cycles		tRP(min) ≤4 x tCK
Auto-Refresh command period during initialization	24 clock cycles		tMRD(min) ≤24 x
. ,	•		tCK `

There is no hard constraint on tRFC and tREFI (outside initialization - see table above). The values specified by the component can be programmed in the controller.

There is no hard constraint on tRC, tRAS, tRCD, tWR and tRP (outside initialization - see table above). The values specified by the component must be used to compute the parameters tRBK, tWK and tRCD to be programmed in the controller.

8.4. NAND Flash interface

8.4.1. Overview

SAM5808B can access to NAND Flash device in two ways:

- Direct communication through the NAND Flash controller. Used by P16 for NAND bad block management
- Communication through a built-in NAND Flash sequencer that will take care of transfers from the NAND Flash device to the external RAM buffer by automatically writing in NAND Flash controller registers. Used by sample cache module to feed P24 requests.

NAND Flash controller has following features:

- Handles automatic Read/write transfer through 2x2112 byte SRAM buffer
- DMA support
- Support SLC NAND Flash technology
- Programmable timing on SysClk basis
- Programmable Flash Data width 8-bit or 16-bit
- Automatic error correction while reading or writing with 4D-Hamming (up to 9 bit errors correction)
- Support Enhanced Data Output (EDO)

Pins used:

NDIO7-0: I/O for Address, Data and Command transfer on 8-bit width.

NDCE0/, NDCE1/: Chip Enable NDALE: Address Latch Enable. NDCLE: Command Latch Enable

NDWE/: Write Enable NDRE/: Read Enable NDR/B/: Ready Busy status

8.4.2. NAND Flash features

The NAND flash devices that can be used with SAM5808B need to have the following features:

- SLC technology
- ONFI compliant
- Read Cache Random (00h/31h) and Read Cache End commands support (3Fh)
- 2kByte or 4kByte page size
- in case of multi-plane organization, it must support interleave (multi-plane) operations and must have the 'No block address restrictions' set inside its interleaved operation attributes
- spare area at least 64 Bytes (for hamming ECC) by 2kBytes area
- page per block: 64,128, 256 or 512
- 5 address cycles max
- 8 GByte size max
- 8-bit bus width

8.4.3. NAND Flash external RAM buffer

When running the NAND flash sequencer, an external RAM buffer is needed to store preloaded data. Size of this buffer depends on NAND device page size and on number of used voices. NAND management tables (64kWord) and Sound bank parameters are also stored in this RAM.

- If NAND device page size is 2kByte
 - Ext. RAM size = (Voice number x 3 x 512Word) + 64kWord + Sound Bank Parameters size
- If NAND device page size is 4kByte
 - Ext. RAM size = (Voice number x 3 x 1024Word) + 64kWord + Sound Bank Parameters size

8.4.4. NAND Flash controller Timing

Timing parameters of SAM5808B NAND Flash controller are programmable. They should be set according to the parameters of the connected NAND Flash. The table below helps to make the correspondence between timing parameters used by ONFI standard and timing parameters needed by the controller. The lower case parameters refer to the controller, the upper case parameters refer to ONFI standard. This table does not take in account the propagation delays on PCB.

In the tables below, the following SAM5808B timings are used:

- tasym: Asymmetry on SAM5808B output delays (estimation: 2 ns)
- tprop: Propagation delay inside SAM5808B (max 8 ns)

SAM5808B timing parameter	Available settings	Description	NAND Flash ONFI timing
twp	(1 to 16)* spck	Write low pulse	max(tWP, tDS) + tasym
twh	(1 to 16)* spck	Write high pulse	max(tCLH, tCH, tALH, tDH, tWH, tWC-twp) + tasym
trp	(1 to 16)* spck	Read low pulse	max(tRP, tREA) + tasym
treh	(1 to 16)* spck	Read high pulse	max(tREH, tRC-trp) + tasym
bta	(1 to 64)* spck	Bus turnaround after read	tRHZ + tasym
twsetup	(1 to 16)* spck	Write setup	max(tCLS, tCS, tALS) - twp + tasym
trsetup	(1 to 16)* spck	Read setup	max(tCEA-tREA, tCLR) + tasym
tbusy	(1 to 32)* spck	Delay after busy high	tRR – trsetup
twhr	(1 to 16)* spck	Write hold	tWHR - trsetup + tasym
tceh	(1 to 8)* spck	NDCE/ high pulse	Not constrained
ce_intercept	Disable, Enable	NDCE/ intercept enable	Disable
ce_busy	Low, High	NDCE/ level during busy	High

8.5. Multi-Purpose Quad SPI interface

This is a master synchronous serial interface, operating in Single or Quad SPI mode 0. Quad SPI mode is driven by a powerful QSPI controller with following features:

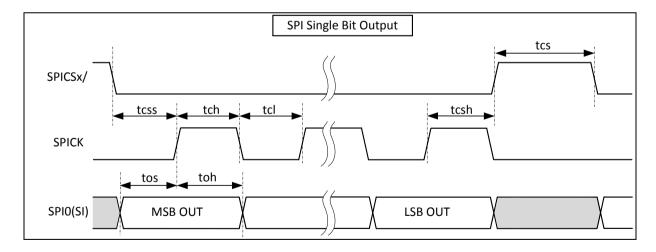
- Handles automatic Read/write transfer through standard P16 instructions
- Programmable address and data formats
- Programmable data bit number
- Programmable clock up to 100MHz
- Multi-burst mode

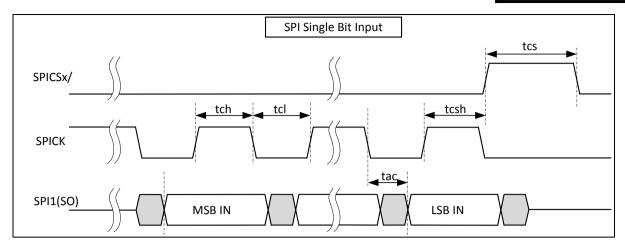
Single SPI mode can be driven by the QSPI controller, but also by a Simple SPI interface through two IO registers.

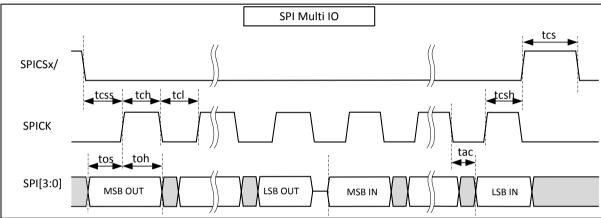
Pins used in Single SPI:

SPICK: Clock output

SPICS0/, SPICS1/, SPICS2/, SPICS3/: Chip select for up to 4 devices SPI0: Serial Output to be connected to SI input of SPI peripheral (MOSI) SPI1: Serial Input to be connected to SO output of SPI peripheral (MISO)


Pins used in Quad SPI:


SPICK: Clock output


SPICS0/, SPICS1/, SPICS2/, SPICS3/: Chip select for up to 4 devices

SPI0: Serial IO0 for Quad commands and data SPI1: Serial IO1 for Quad commands and data SPI2: Serial IO2 for Quad commands and data SPI3: Serial IO3 for Quad commands and data

8.5.1. Timing

The QSPI controller works on SysClk (usually 196.608MHz with Xtal = 12.288MHz). SPICK frequency is SysClk/Nq. Nq can be programmed between 2 and 4096.

Parameter	Symbol	Min	Тур	Max	Unit
SPICK Frequency	fspick	SysClk/4096	-	SysClk/2	Hz
Clock High Time (even Nq)	tch	0.5*spck*Nq-0.5		0.5*spck*Nq+0.5	ns
Clock High Time (odd Nq)	tch	0.5*spck*(Nq-1)-0.5		0.5*spck*(Nq-1)+0.5	ns
Clock Low Time (even Nq)	tcl	0.5*spck*Nq-0.5		0.5*spck*Nq+0.5	ns
Clock Low Time (odd Nq)	tcl	0.5*spck*(Nq+1)-0.5		0.5*spck*(Nq+1)+0.5	ns
CS/ High Time	tcs	spck*Nq-1.5			ns
CS/ Active Setup Time	tcss	spck*Nq-1.5			ns
(relative to SPICK)					
CS/ Active Hold Time	tcsh	spck*Nq-2.5			ns
(relative to SPICK)					
IO Out Setup Time(even Nq)	tos	0.5*spck*Nq-1.5			ns
IO Out Setup Time(odd Nq)	tos	0.5*spck*(Nq+1)-1.5			ns
IO Out Hold Time(even Nq)	toh	0.5*spck*Nq-2.5			ns
IO Out Hold Time(odd Nq)	toh	0.5*spck*(Nq-1)-2.5			ns
Access Time from falling clock	tac	0.5		Spck*Nq-2.5	ns
edge					

8.6. Host Parallel Interface

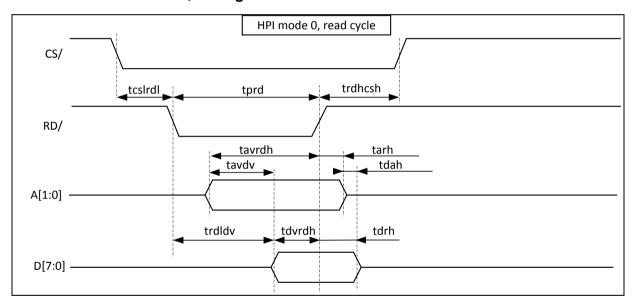
This interface is used to connect the SAM5808B to an external host processor for control and fast data transfer. Firmware can be downloaded at power-up through this interface.

8.6.1. Host Parallel Interface (HPI) mode 0

Pins used in mode 0 (A1=0):

D7-D0: 8-bit Data I/O

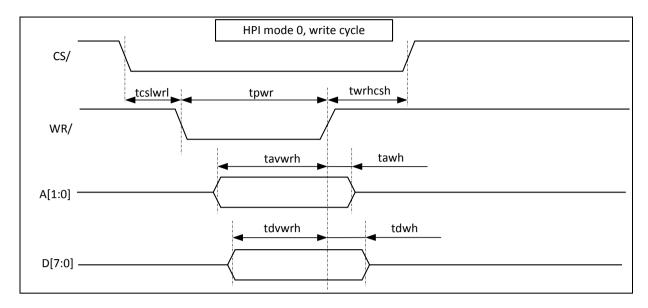
CS/: Chip Select from host (input)


A1-A0: Addresses from host (input), A1=0 to select mode 0, A0 for data selection

WR/: Write from host (input) RD/: Read from host (input)

IRQ (optional): Interrupt Request (output)

This mode is typically used to send MIDI messages or other control data from the Host CPU (master) to the SAM5808B (slave).


8.6.1.1. **HPI mode 0, Timings**

Parameter	Symbol	Min	Тур	Max	Unit
Chip select low to RD/ low	tcslrdl	2	-	-	ns
RD/ pulse width	tprd	10	-	-	ns
RD/ high to CS/ high	trdhcsh	3	-	-	ns
Address valid to RD/ high	tavrdh	3	-	-	ns
Address valid to data valid	tavdv	-	-	10	ns
RD/ low to data valid	trdldv	-	-	10	ns
Data valid to RD/ high	tdvrdh	3	-	-	ns
Address out hold from RD/	tarh	3	-	-	ns
Data out hold from RD/	tdrh	0	-	10	ns
Data out hold from address out	tdah	0	-	10	ns

Notes:

1. tcslrdl Min and trdhcsh Min can be reduced to 0 ns if 3 ns are added to tprd Min, tarh Min, tdrh Min, tavrdh Min, tdvrdh Min

Parameter	Symbol	Min	Тур	Max	Unit
Chip select low to WR/ low	tcslwrl	2	-	-	ns
WR/ pulse width	tpwr	5	-	-	ns
WR/ high to CS/ high	twrhcsh	3	-	-	ns
Address valid to WR/ high	tavwrh	3	-	-	ns
Data valid to WR/ high	tdvwrh	3	-	-	ns
Address out hold from WR/	tawh	3	-	-	ns
Data out hold from WR/	tdwh	3	-	-	ns

Notes:

1. tcslwrl Min and twrhcsh Min can be reduced to 0 ns if 3 ns are added to tpwr Min, tawh Min, tdwh Min, tavwrh Min, tdvwrh Min

8.6.1.2. HPI mode 0, IO Status Register

TE	RF	Χ	Χ	ID3	ID2	ID1	ID0	Status register is read when A1=0, A0=1, RD/=0, CS/=0
		•						

- TE: Transmit Empty: This bit is 1 when nothing is transmitted from SAM5808B to host. If 0, data from SAM5808B to host is pending and IRQ pin is high. Host reading the data with pin A0=0 sets TE to 1 and clear IRQ. TE bit is actually reflecting inverted value of IRQ pin (IRQ/).
- RF: Receiver Full: Host should not write any data or control to SAM5808B if this bit is 1. When 0, then SAM5808B is ready to accept data from host.
- ID[3:0]: these 4 bits are firmware dependant and may be used for defining type of data sent by SAM5808B in case of multiple flows of data.

Host read should be performed with following steps:

- a) Nothing to read if IRQ pin is low. First wait for IRQ pin being high
- b) Read status (A0=1) to get ID[3:0] (this step is optional if ID[3:0] bits are not used and not defined by firmware)
- c) Read data (A0=0) (IRQ goes low at the end of read cycle, on rising edge of RD/ signal)
- d) Wait for IRQ pin being high again...

Note: On steps a) and d), if IRQ pin is not connected and not used, host can also read status and wait for TE bit=0

Host write should be done with following steps:

- a) Read status (A0=1). If bit RF=0, go to step b). If bit RF=1, read again status till bit RF going to 0.
- b) Write new data (A0=0) or new control (A0=1)

Note about step a):

There are two different cases for RF bit being 1:

- RF bit is 1 because FIFO of P16 is full. RF bit will go low again as soon as P16 is reading some bytes of the FIFO in order to have some free space again inside fifo and then is clearing bit 7 (FIFULL) of port 1 (CONTROL/STATUS). This time is firmware dependant.
- RF bit is 1 because previous host write has still not been written into the P16 FIFO. This case can happen if P16 is executing a long instruction. The writing will be indeed performed only when P16 has finished the instruction.

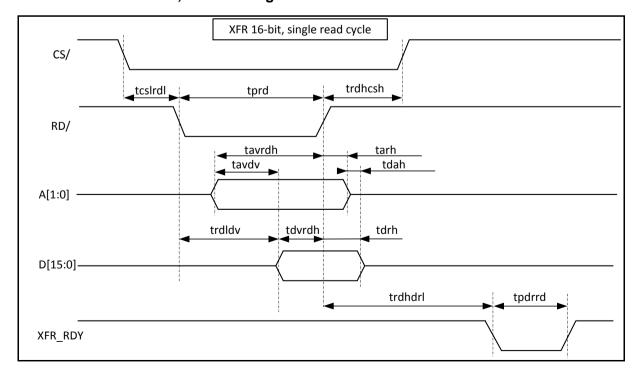
8.6.2. Host Parallel Interface mode 1 (fast data transfer)

Pins used in mode 1 (A1=1):

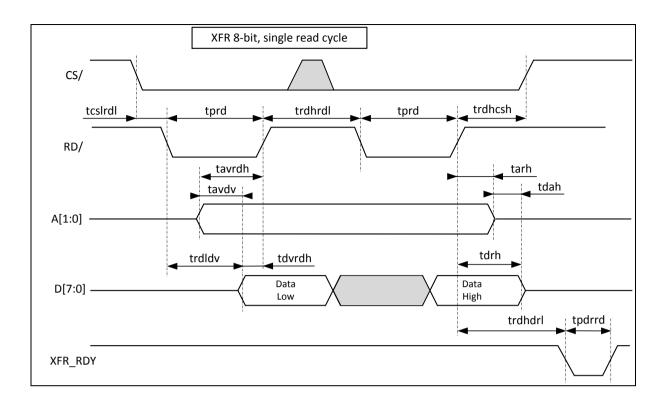
D7-D0 or D15-D0 (I/O)

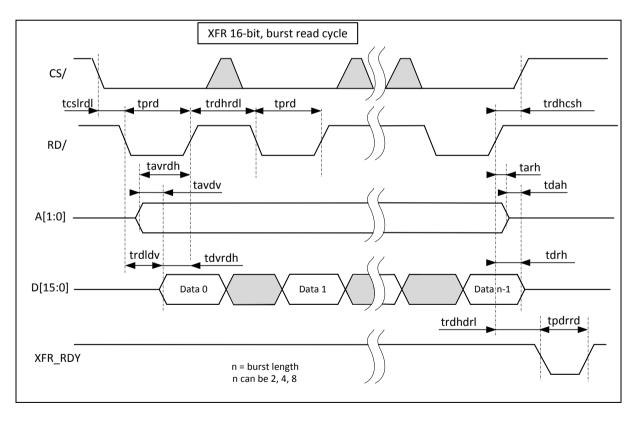
CS/ (input)

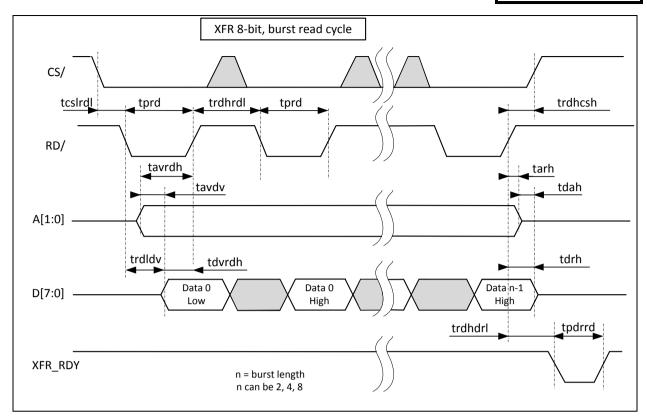
A1-A0 (input): Addresses from host (input), A1=1 to select mode 1, A0 is "don't care".

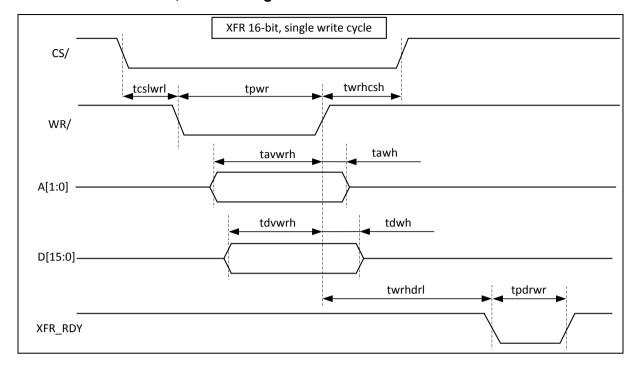

WR/ (input)

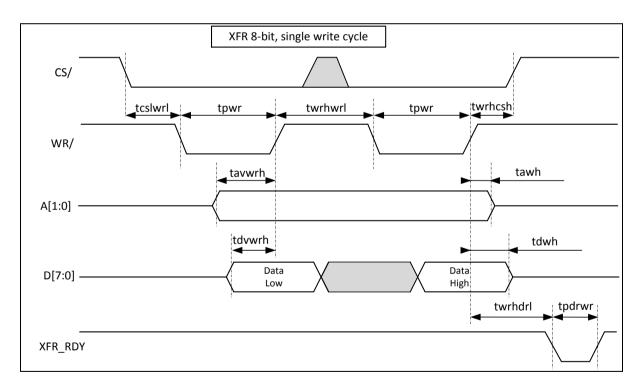
RD/ (input)

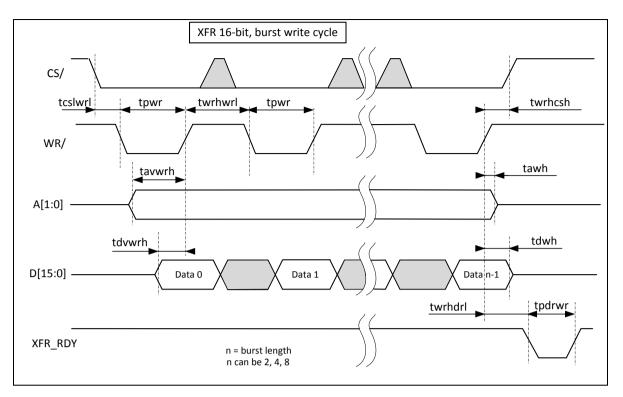

XFR RDY (output)

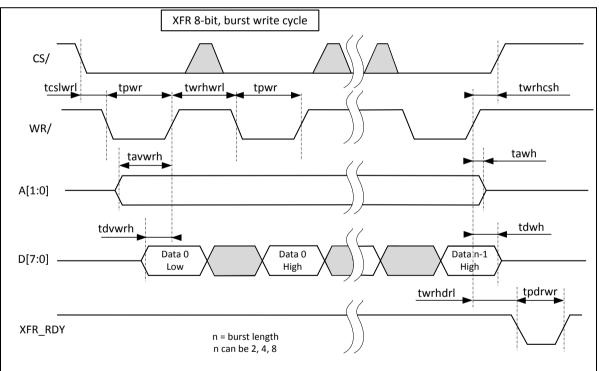

This interface is used for fast read/write transfer between host processor and SAM5808B. Typical applications are direct fast sound bank transfer from host to SDRAM and streaming audio. However, any other devices connected to internal async bus of SAM5808B can be also accessed by host through this interface (other external memories, internal ram, router and P24 memories, etc.). Single or burst read/write modes are available. Read/write mode is selected by firmware


8.6.2.1. HPI mode 1, Read Timing




Parameter	Symbol	Min	Тур	Max	Unit
Chip select low to RD/ low	tcslrdl	2	-	-	ns
		(see note 1)			
RD/ pulse width	tprd	10	-	-	ns
RD/ high to RD/ low	trdhrdl	5	-	-	ns
RD/ high to CS/ high	trdhcsh	3	-	-	ns
		(see note 1)			
Address valid to RD/ high	tavrdh	3	-	-	ns
Address valid to data valid	tavdv	-	-	10	ns
RD/ low to data valid	trdldv	-	-	10	ns
Data valid to RD/ high	tdvrdh	3	-	-	ns
Address out hold from RD/	tarh	3	-	-	ns
Data out hold from RD/	tdrh	0	-	10	ns
Data out hold from address out	tdah	0	-	10	ns
RD/ high to XFR_RDY low	trdhdrl	-	-	10	ns
XFR_RDY pulse width in read mode	tpdrrd	15	-	-	ns


Notes:


- 2. tcslrdl Min and trdhcsh Min can be reduced to 0 ns if 3 ns are added to tprd Min, tarh Min, tdrh Min, tavrdh Min, tdvrdh Min
- 3. See also §8.6.2.3 Typical timing examples

8.6.2.2. HPI mode 1, Write Timing

Parameter	Symbol	Min	Тур	Max	Unit
Chip select low to WR/ low	tcslwrl	2	-	-	ns
		(see note 1)			
WR/ pulse width	tpwr	5	-	-	ns
WR/ high to WR/ low	twrhwrl	5	-	-	ns
WR/ high to CS/ high	twrhcsh	3	-	-	ns
		(see note 1)			
Address valid to WR/ high	tavwrh	3	-	-	ns
Data valid to WR/ high	tdvwrh	3	-	-	ns
Address out hold from WR/	tawh	3	-	-	ns
Data out hold from WR/	tdwh	3	-	-	ns
WR/ high to XFR_RDY low	twrhdrl	-	-	10	ns
XFR_RDY pulse width in write mode	tpdrwr	15	-	-	ns

Notes:

2. tcslwrl Min and twrhcsh Min can be reduced to 0 ns if 3 ns are added to tpwr Min, tawh Min, tdwh Min, tavwrh Min, tdvwrh Min

8.6.2.3. Timing examples for sound bank download via HPI mode1

1) SDRAM, burst x8, 8-bit mode, no traffic (all P24 stopped) XFR READY low typ = 15 to 45 ns

Time for transferring 1Kx16: Write mode=25us, Read mode=32us

---> write a 256Mx16 sound bank = less than 7 seconds

2) SDRAM, burst x8, 16-bit mode, high traffic (all P24 on, 256 voice poly accessing also SDRAM simultaneously)

XFR_READY low typ = 250ns to 400ns (write mode), 150ns to 250ns (read mode)

Time for transferring 1Kx16: Write mode=47us, Read mode=37us

---> write full 256Mx16 sound bank = less than 14 seconds

8.7. Serial Slave Asynchronous Interface (UART / MIDI)

The SAM5808B can be controlled by an external host processor through this bidirectional serial interface.

Pins used:

MIDI_IN1, MIDI_OUT1: UART / MIDI port 1 MIDI_IN2, MIDI_OUT2: UART / MIDI port 2

The serial signals on MIDI_IN and MIDI_OUT pins are asynchronous signals following the UART / MIDI transmission standard:

Baud rate: programmable up to >400kb/s, typically 31.25 kb/s (MIDI) or 38.4kb/s (COM) Format: start bit (0), 8 data bits, stop bit (1)

8.8. Serial slave synchronous interface

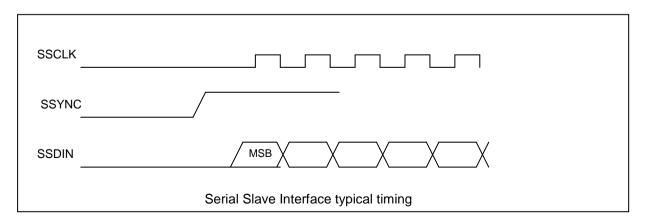
The SAM5808B can be controlled by an external host processor through this unidirectional serial interface.

Pins used:

SSCLK, SSYNC, SSDIN (input)

SSINT/ (output)

Data is shifted MSB first. SAM5808B samples an incoming SSDIN bit on the rising edge of SSCLK, therefore the host should change SSDIN on the negative SCLK edge.


SSYNC allows initial synchronization. The rising edge of SSYNC, which should occur with SSCLK low, indicates that SSDIN will hold MSB data on the next rising SSCLK.

The data is stored internally into a FIFO. Size of FIFO is firmware dependent. Minimum size is 128 bytes. Host should stop sending data as soon as SSINT/ goes high.

When the FIFO count is below 64, the SSINT/ output goes low. This allows the host processor to send data in burst mode.

The maximum SSCLK frequency is fsck/4 (fsck being the system clock frequency. fsck =1/spck). The minimum time between two bytes is 256 spck.

The contents of the SSDIN data are defined by the firmware.

8.9. I'S Digital audio

Pins used:

CLBD, WSBD (outputs): Audio clocks

DABD7-0: Digital audio outputs (8 * 2 channels) DAAD7-0: Digital audio inputs(8 * 2 channels)

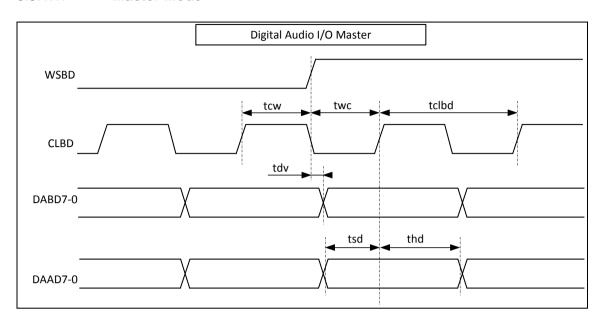
And optionally

XCLBD0-XWSBD0, XCLBD0-XWSBD0 (inputs): 2 pairs of external clocks for slave mode on DAAD7-0 inputs.

The SAM5808B allows for 16 digital audio output channels and 16 digital audio input channels. All audio channels are normally synchronized on single clocks CLBD, WSBD which are derived from the IC crystal oscillator. However, as a firmware option, the DAAD7-0 inputs can be individually synchronized with incoming XCLBD and XWSBD signals. In this case, the incoming sampling frequencies must be lower or equal to the chip sampling frequency.

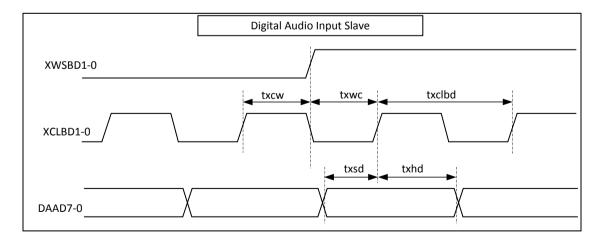
The digital audio timing follows the I2S or MSB left standard, with up to 24 bits per sample

The choice of clock factors is done by the firmware. As an example, table below show some possible clock combinations with 12.288MHz Xtal.


Sampling Rate @ Xtal=12.288MHz	CKOUT freq	CKOUT/WSBD freq ratio	CLBD freq	CLBD/WSBD freq ratio
48kHz	12.288MHz	256	3.072MHz	64
48kHz	24.576MHz	512	3.072MHz	64
96kHz	12.288MHz	128	6.144MHz	64
96kHz	24.576MHz	256	6.144MHz	64
192kHz	24.576MHz	128	12.288MHz	64

Note: WSBD/CLBD ratio is always 64.

8.9.1. Timing

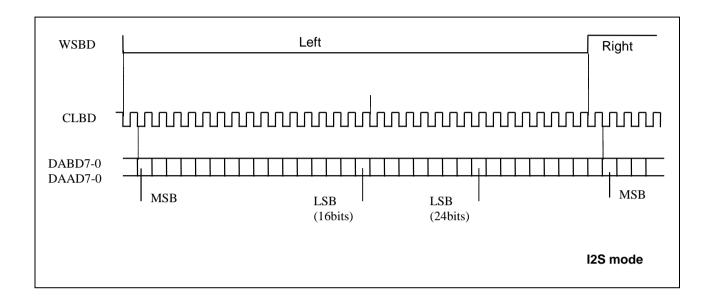

8.9.1.1. Master Mode

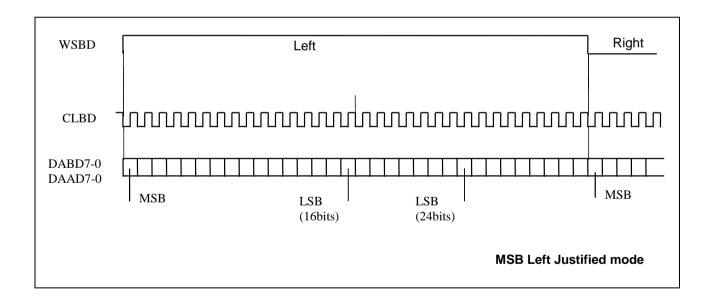
cpck is related to CLBD frequency: cpck = 1/(2*CLBD_freq)

Parameter	Symbol	Min	Тур	Max	Unit
CLBD rising to WSBD change	tcw	cpck -11	-	-	ns
WSBD change to CLBD rising	twc	cpck -11	-	-	ns
DABD valid after CLBD falling	tdv	-11	-	11	ns
DAAD valid prior CLBD rising	tsd	20	-	-	ns
DAAD valid after CLBD rising	thd	20	-	-	ns
CLBD cycle time	tclbd	-	2* cpck	-	ns

8.9.1.2. Slave Mode

xpck is related to XCLBD frequency: xpck = 1/(2*XCLBD_freq)


Parameter	Symbol	Min	Тур	Max	Unit
CLBD rising to WSBD change	txcw	20	-	-	ns
WSBD change to CLBD rising	txwc	20	-	-	ns
DAAD valid prior CLBD rising	txsd	20	-	-	ns
DAAD valid after CLBD rising	txhd	20	-	-	ns
CLBD cycle time	txclbd	-	2* xcpck	-	ns



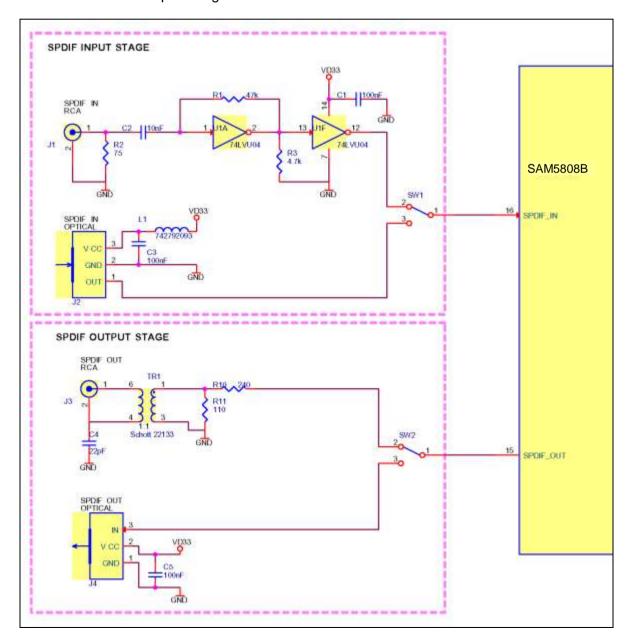
8.9.2. Digital Audio Format

SAM5808B can generate I2S or MSB Left justified digital audio format. Master Clock CLBD can be 128xFs, 256xFs, 512xFs, 192xFs, 384xFS or 768xFs. Format and clock ratio are selected by firmware.

8.10. SPDIF Digital audio

The SPDIF Digital Audio Interface Controller implements the IEC60958 interface features (commonly known as Sony/Philips Digital Interface), a unidirectional and self-clocking interface for connecting digital audio equipment using the linear PCM coded audio samples. Receiver and Transmitter modes are supported at the same time.

Pins used:


SPDIF_IN: Serial data input SPDIF_OUT: Serial data output

Data mode capabilities:

- Sample rate from 3kHz to 192kHz
- 24 bit per sample

8.10.1. Reference Schematic

Schematic below is example design for SPDIF IN and OUT interface with SAM5808B.

8.11. USB 2.0 Ports

SAM5808B offer two USB 2.0 (High-Speed) ports:

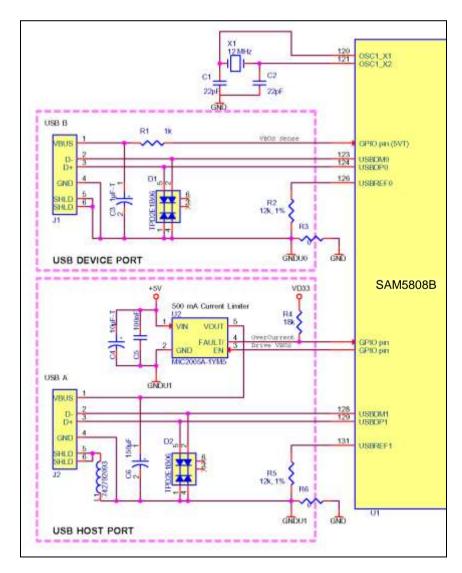
- USB Port0 can be used as Device, Host or Dual Role
- USB Port1 can be used only as Host

Pins used:

OSC1_X1-OSC1_X2: 12MHz Crystal connection

USBDM0-USBDP0: Differential analog IO for port 0

USBREF0: Connection to $12k\Omega \pm 1\%$ reference resistor for port 0 USBID: A or B device detection for port 0 in Dual Role Mode (input)

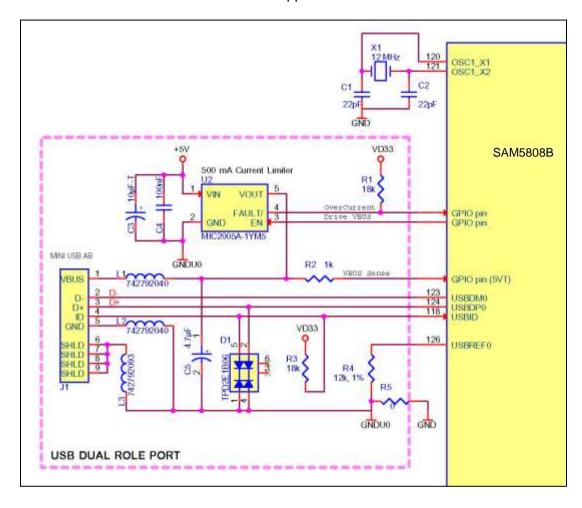

USBDM1-USBDP1: Differential analog IO for port 1

USBREF1: Connection to $12k\Omega \pm 1\%$ reference resistor for port 1

8.11.1. USB Device Port and USB Host Port

Schematic below can be used as reference for:

- application with one USB Device Port
- application with one USB Host Port
- application with one USB Device Port and one USB Host Port



8.11.2. USB Dual Role Port

Schematic below can be used as reference for application with on Dual Role Port.

8.12. Ethernet Media Access Control

8.12.1. Overview

SAM5808B can access Ethernet through its embedded MAC (Media Access Control) connected to an external Ethernet PHY (Physical transceiver).

Network interface features:

- Support 10/100 data transfer rate
- Reduced Media Independent Interface (RMII)
- MII Management unit for access to the internal PHY registers
- Internal loopback mode

Data link layer functionality:

- Meet the IEEE 802.3 CSMA/CD standard
- Full or half duplex 10/100 (operation)
- Flexible address filtering (Up to 16MAC addresses, 512-bit hash table)
- Flow Control (with automatic Pause and Un-Pause frame generation)
- Statistical Counter for station management (MIB)

Integrated DMA

- Scatter-gather (descriptor based) architecture
- Descriptor "ring" or "chain" structures
- Arbitrary data alignment for the transmit buffers

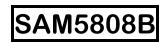
Transmit/receive dual port RAM interfaces

- Operates as internal configurable FIFOs
- Programmable transmit threshold levels
- Transmit FIFO "store and forward" functionality

Pin used:

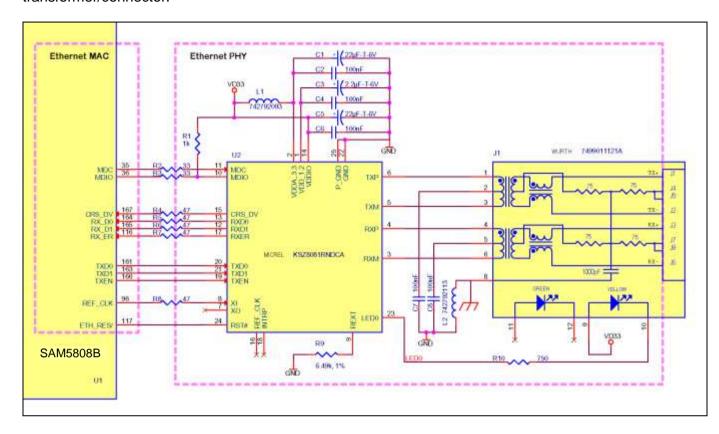
REF_CLK: 25MHz RMII reference clock output

ETH_RES/: Reset output


RX_ER: RMII Receive Error input RXD0: RMII Receive Data 0 input RXD1: RMII Receive Data 1 input

CRS_DV: RMII Carrier Sense/Receive Data Valid input

TXD0: RMII Transmit Data 0 output TXD1: RMII Transmit Data 1 output TX_EN: RMII Transmit Enable output


MDC MII Clock output MDIO MII Data I/O

8.12.2. Reference Schematic

Schematic below is example design for Ethernet interface with SAM5808B. Ethernet PHY is made of Micrel KSZ8081 PHY device + Wurth 7499011121A LAN transformer/connector.

9. Audio Synchronization

9.1. Synchronization on external audio devices

In professional applications, it can be decided to synchronize SAM5808B audio processing on external audio flow(s) from USB, SPDIF or Ethernet interfaces. Another professional feature is synchronization on external word clock.

9.1.1. Principle

- Audio clock frequency is extracted from incoming audio flow or from external word clock and is compared with frequency currently used for internal audio processing.
- Comparison result is used to control the internal PWM generator.
- PWM generator output is filtered, and then, can drive an external VCXO.
- VCXO clock output is used as master clock for internal audio processing.

As a result, clock frequency for internal audio processing is perfectly enslaved to incoming audio flow.

Pin used:

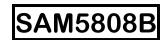
OSC1 X1, OSC1 X2: Connection to 12MHz crystal for USB, Ethernet and system boot.

OSC2_X1: Clock input for audio system clock from VCXO

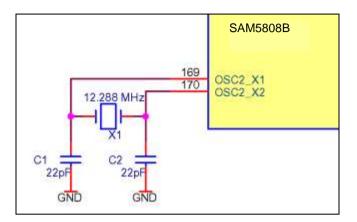
PWM: PWM output

XWSBD0 (optional): Input for external Word Clock

9.1.2. Reference schematic


Schematic below can be used as reference for synchronization on external audio flowing and optionally on external word clock.

- At start-up system runs on USB/Ethernet oscillator used as Boot oscillator.
- When environment is stabilized, firmware switches system and audio clock source from boot oscillator to second oscillator input OSC2_X1 driven by VCXO clock.


Notes

- PCB design around VCXO is sensitive. See VCXO manufacturer relative application notes.

10. Recommended Crystal Compensation

10.1. OSC2 X1 - OSC X2

C1 and C2 should be chosen in range 12pF-27pF. Different values lead to different oscillation characteristic and can be selected based on board layout considerations. External feedback resistor should be avoided because there is an internal feedback resistor.

10.2. OSC1_X1 - OSC1_X2

Crystal connection on OSC1_X1 – OSC1_X2 follows the same off-chip components recommendation than crystal connection on OSC2_X1 – OSC2_X2

11. Reset and Power Down

During power-up, the RST/ input should be held low until the core is stabilized in reset state, which takes 10ms Max.

After the low to high transition of RST/, following happens:

- Oscillator OSC1 is started
- P16 program execution starts in built-in ROM
- PLL is started and stabilized after 2.5 ms typ
- P16 application program loading starts.

If RST/ is asserted low then the crystal oscillators and PLLs will be stopped.

Other power reduction features allowing warm restart are controlled by firmware:

- P24s can be individually stopped
- The clock frequency can be internally divided by 256
- ADC can be disabled
- Controllers for USB, Ethernet or SDRAM can be individually switched off

11.1. Power-up sequence

At power-up the following sequence is executed:

- 1. STIN is sensed. If HIGH, then the built-in debugger is started.
- 2. If MC1-0 bits were preprogrammed they are read from eFuse. Otherwise MC1-0 pins are sensed and corresponding Memory Config is set
- 3. ROM boot tries to identify source for firmware. For that it tries to find "DR" marker for Dream firmware. This step is done in slow mode (PLL not started). During this step, rom boot set the minimum of primary functions to avoid any potential conflict of some pins. Accesses to memories are done with longest access time, most simple protocol (accessing for example Quad SPI memory in single mode rather than quad mode). ROM boot searches source in following order:
 - Main Memory. According to Memory Config, Main Memory can be: NOR Flash or NAND Flash.
 - b) Multi-Purpose SPI
- 4. If valid firmware has not been found, firmware download from a host processor is assumed into internal RAM (56k x16 max) via Host Parallel Interface.
 - a) The byte 0ACh is written to the host. The host checks status and can recognize that the chip is ready to accept program download.
 - b) The host sends the Boot_Info table (low byte first, 20 * 2 bytes). Boot_Info table contains info on firmware size, primary and secondary functions setting, memory and software config. The Boot_Info table is generated by SamVS, and is located in the firmware binary file at word addresses 1-20.
 - c) SAM5808B sends ACh when initializations are ready
 - d) The host sends the SAM5808B firmware binary from word address 400h, 2*DownLoadSize bytes, low byte first.
 - "DownLoadSize" is defined in the Boot_Info table at word address 3.
 - e) The byte 0ACh is written to the host. The host checks status and can recognize that the chip has accepted the firmware.
 - f) SAM5808B starts the firmware.

Note: Be aware that at boot time the IRQ signal is not used, the Host CPU must read the port status register (TE/RF bits) before sending or reading a data byte to/from SAM5808B via 8-bit parallel port.

11.2. Pin status in Power-down mode

Table below shows the status of each I/O pin in Power-down mode (RST/Low)

Pin name	Status in Power-down mode			
VIN	ANA IN			
RST/	IN driven Low			
TEST	IN with Pull-down resistor			
STIN	IN with Pull-down resistor			
STOUT	IN with Pull-up resistor			
CKOUT, CLBD, WSBD	IN with Keeper resistor			
MIDI_IN1, MIDI_OUT1	IN with Keeper resistor			
All Memory pins (мем)	TRISTATE output			
All other I/O pins	IN with Keeper resistor			

Note:

- Keeper resistor can be pull-up or to pull-down resistor. This will depend on logic state at the pin where it is connected when switching to Power-down mode.
 - If logic state is 'Low' when entering Power-down mode, keeper resistor will be pull-down
 - If logic state is 'High' when entering Power-down mode, keeper resistor will be pull-up

12. Recommended Board Layout

Like all HCMOS high integration ICs, following simple rules of board layout is mandatory for reliable operations:

12.1. GND, VD33, VM, VC12, VD12 distribution, decoupling

All GND, VD33, VM, VC12, VD12 pins should be connected. A GND plane is strongly recommended. The board GND, VD33, VM and VC12, VD12 distribution should be in grid form.

Recommended VD12 decoupling is 100nF+10nF at each VD12 pin of the IC with additional 10µFT on two opposite sides

VC12 requires 10µFT +100nF on each pin.

Minimum recommended VM decoupling is 0.1µF at half of VM pins. 10nF should be connected at the other half of VM pins. 10µFT should be also added on two opposite sides.

Recommended VD33 decoupling is 0.1µF at half of VD33 pins.

VD33R requires a single 10µFT decoupling.

VD330 requires a single 100nF decoupling.

VD33U0 and VD33U1 require 10µFT+100nF+10nF capacitors on each.

12.2. Crystal

The paths between the crystal, the crystal compensation capacitors and the IC should be short and shielded. The ground return from the compensation capacitors filter should be the GND plane from the IC.

12.3. Busses

Parallel layout from D15-D0 and WA27-WA0/WD15-WD0 should be avoided. The D15-D0 bus is an asynchronous type bus. Even on short distances, it can induce pulses on WA27-WA0/WD15-WD0 which can corrupt address and/or data on these busses.

Parallel layout from D15-D0 and MA18-MA0/MD15-MD0 should be avoided.

Parallel layout from D15-D0 and DRA13-DRA0/DRBA1-DRBA0/DRDQ15-DRDQ0/DRDS1-DRDS0 should be avoided.

A ground plane should be implemented below the D16-D0 bus, which connects both to the host and to the SAM5808B GND.

A ground plane should be implemented below the WA27-WA0/WD15-WD0 bus, which connects both to the NOR Flash grounds and to SAM5808B.

A ground plane should be implemented below the MA18-MA0/MD15-MD0 bus, which connects both to the SRAM grounds and to SAM5808B

A ground plane should be implemented below the NDIO15-NDIO0 bus, which connects both to the NAND Flash grounds and to SAM5808B.

12.4. SDR SDRAM

For SDRAM following layout rules should be applied:

- 4 layer PCB is needed for SDR SDRAM. Layer 1 = Signal + Ground plane, Layer 2 = Ground plane, Layer 3 = Signal + Power Supply Plane, Layer 4 = Signal + Ground plane
- If 4 SDRAM memory devices, it is recommended to implement 2 devices on each side of the PCB.
- All DRDQ15-DRDQ0, DRDS0-DRDS1, DRDM0-DRDM1 should be routed together and should have same length, considering all the SDRAM devices. It means that each DRDQx signal should have the same length from its SAM5808B DRDQx pin to each of the DRDQx pin of each SDRAM device. It also means that all the DRDQx and DRDMx signals should have the same length.
- All DRDA13-DRDA0, DRDBA1-DRDBA0 should be routed together and should have the same length, considering one SDRAM device. It means that all the DRDAx/DRDBAx signals should have a same length L1 from SAM5808B to the first SDRAM device and a same length L2 from SAM5808B to the second SDRAM device... Tolerance should be lower than +/-2mm.
- DRRAS/, DRCAS/, DRWE/, DRCKE should be routed together and should have the same length.
- SDRAM systems have only a single-ended clock (DRCK), so the important trace-matching
 relationship is not to a second differential clock trace but instead to the other groups. Match
 clock traces to data group traces within ±12mm. If multiple clocks are transmitted from the
 controller to components, all clock traces should be equivalent to within ±0.5mm. Matching
 trace lengths to this level of accuracy helps minimize skew.
 - It is also needed to match clock traces to each signal trace in the address and command groups to within ±10mm. If clock traces cannot be matched to the trace lengths of these groups within 10mm, then all clock trace lengths must be increased as a group. The longest-to-shortest trace-length difference must be ≤20mm, so both longest and shortest traces determine how much length must be added to all clock lines.

12.5. ESD and EMI

Below are some tips that allow reaching good protective level again EMI and ESD with SAM5808B. This list is no exhaustive.

- Equipotentiality of the ground plane is a major point to avoid weakness against EMI. The 4
 layer design is the best solution. When 2 layer design, the unused zones of the component
 side should be filled with ground planes connected with a lot of through holes to the ground
 plane of the solder side.
- High speed clock and signals trace should be short and shielded. Serial resistor or RC filter can be added close to the source to filter harmonics.
- Main power supply, before regulators should be protected with T filter like Murata NFM41PC204F1H3 and serial choke coil like LQH43CN220K03
- Connectors should be protected. EMI filters like Murata NFM21CC102R1H3 should be implemented on the clock and data lines, close to their connection on the connectors. Power supply lines can be protected with Murata BLM21RK102SN1 or Wurth 742792093.
- Each power supply pin of SAM5808B and of all active components should be decoupled with 100nF X7R capacitor and 470pF NPO or COG capacitor. A 10µF capacitor should be added close to the SAM5808B Xtal.
- Each active component should be isolated from the main power supply with a serial inductor on its power supply lines. Murata BLM21RK102SN1 or Wurth 742792093 can be used for this.
- Address, Data, Chip select, Reset signals for SAM5808B can be isolated from their environment with serial 33 Ohm resistor close to SAM5808B.
- Data, clock lines signals for DAC should be isolated from their environment with serial 22 Ohm resistors close to the DAC.
- On sensitive lines like Reset, 470pF NPO or COG capacitor can be added, close to SAM5808B.

13. Product development and debugging

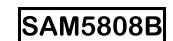
Dream provides an integrated product development and debugging tool SamVS. SamVS runs under Windows (WinXP and up). Within the environment, it is possible to:

- Edit
- Assemble / Compile (C Compiler for P16XT included) and build firmware binary file
- Debug on real target (In Circuit Emulation)
- Program external NOR Flash, NAND Flash or serial Flash/EEPROM on target.

Separated tools allowing programming the internal eFuses of SAM5808B, e.g. "ProgSam" provided by Dream for in-circuit programming of eFuses and Firmware/sound bank.

Two dedicated IC pins, STIN and STOUT allow running firmware directly into the target using serial communication at 57.6 kbauds. Dream provides a USB debug interface (5000DBG-IF) for easy use.

A library of frequently used functions is available within the SamVS-C development package (5808-C-PDK). Thus time to market is optimized by testing directly on the final prototype.


Dream engineers are available to study customer specific applications.

14. Die Revision

All features are same in all die revisions, excepted what is described in the table below.

Die	Package	Notes
Revision	Marking	
Α	SAM5808	AES sound bank encryption mode cannot be used
В	SAM5808B	AES sound bank encryption mode can be used but only in condition:
		Memory Clock = System Clock/2.

Dream Contact

info@dream.fr

Website

http://www.dream.fr

Supply of this product does not convey a license nor imply any right to distribute MPEG Layer-3 compliant content created with this product in revenue-generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or other networks), other content distribution systems (pay-audio or audio-on-demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). An independent license for such use is required. For details, please visit http://mp3licensing.com.

This publication neither states nor implies any warranty of any kind, including, but not limited to, implied warrants of merchantability or fitness for a particular application. Dream assumes no responsibility for the use of any circuitry. No circuit patent licenses are implied. The information in this publication is believed to be accurate in all respects at the time of publication but is subject to change without notice. Dream assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the information included herein.